

US009125886B2

(12) United States Patent

Nitzel et al.

(10) Patent No.:

US 9,125,886 B2

(45) **Date of Patent:**

*Sep. 8, 2015

(54) PCV/MYCOPLASMA HYOPNEUMONIAE/PRRS COMBINATION VACCINE

(71) Applicant: Zoetis Services LLC, Florham Park, NJ

(US)

(72) Inventors: Gregory P. Nitzel, Paw Paw, MI (US);

Jeffrey E. Galvin, Lincoln, NE (US); John Keith Garrett, North Wilkesboro, NC (US); James R. Kulawik, II, Lincoln, NE (US); Tracy L. Ricker, Portage, MI (US); Megan Marie Smutzer, Kalamazoo, MI (US)

(73) Assignee: Zoetis Services LLC, Florham Park, NJ

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/850,331

(22) Filed: Mar. 26, 2013

(65) **Prior Publication Data**

US 2013/0266603 A1 Oct. 10, 2013

Related U.S. Application Data

(60) Provisional application No. 61/620,189, filed on Apr. 4, 2012.

(51) Int. Cl.

 A61K 39/295
 (2006.01)

 A61K 39/02
 (2006.01)

 A61K 39/12
 (2006.01)

 A61K 39/00
 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,606,918	Α		8/1986	Allison et al.
4,681,870	Α	*	7/1987	Balint et al 502/403
5,080,896	Α		1/1992	Visser et al.
5,240,706	Α		8/1993	Faulds et al.
5,252,328	Α	*	10/1993	Faulds et al 424/190.1
5,338,543	Α		8/1994	Fitzgerald et al.
5,534,256	Α		7/1996	Potter et al.
5,565,205	Α		10/1996	Petersen et al.
5,620,691	Α		4/1997	Wensvoort et al.

5,695,766	A	12/1997	Paul et al.
5,695,769	Α	12/1997	Frantz et al.
5,788,962	Α	8/1998	Wise et al.
5,846,735	A	12/1998	Stapleton et al.
6,110,467	A	8/2000	Paul et al.
6,113,916	A	9/2000	Bhogal et al.
6,162,435	A	12/2000	Minion et al.
6,193,971	B1	2/2001	Hofmann et al.
6,251,397	B1	6/2001	Paul et al.
6,251,404	В1	6/2001	Paul et al.
6,268,199	B1	7/2001	Meulenberg et al.
6,342,231	B1	1/2002	Burkhardt et al.
6,380,376	В1	4/2002	Paul et al.
6,500,662	B1	12/2002	Calvert et al.
6,585,981	В1	7/2003	Pijoan
6,592,873	В1	7/2003	Paul et al.
6,753,417	B2	6/2004	Hansen et al.
6,773,908	B1	8/2004	Paul et al.
6,846,477	B2	1/2005	Keich et al.
6,977,078	B2	12/2005	Paul et al.
7,018,638	B2	3/2006	Chu et al.
7,056,492	B2 *	6/2006	Goudie et al 424/9.2
7,074,894	B2	7/2006	Walker et al.
7,169,394	B2	1/2007	Chu et al.
7,223,854	B2	5/2007	Paul et al.
7,264,802	B2	9/2007	Paul et al.
7,264,957	B2	9/2007	Paul et al.
7,279,166	B2 *	10/2007	Meng et al 424/199.1
7,419,806	B2	9/2008	Minion et al.
7,517,976	B2	4/2009	Paul et al.
7,575,752	B2	8/2009	Meng et al.
7,622,124	B2	11/2009	Chu et al.
7,959,927	B2	6/2011	Chu et al.
8,008,001	B2 *	8/2011	Roerink et al 435/5
		(Cont	inued)

FOREIGN PATENT DOCUMENTS

EP 0283085 A1 9/1988 EP 0315153 A2 5/1989

(Continued)
OTHER PUBLICATIONS

Zahn et al. (Journal of General Virology 2005; 86: 677-685).* Redegeld et al. (Nature Medicine. 2002; 8 (7): 694-701).*

Collins et al. "Isolation of Swine Infertility and Respiratory Syndrome Virus (Isolate ATCC VR-2332) in North America and Experimental Reproduction of the Disease in Gnotobiotic Pigs" Journal of Veterinary Diagnostic Investigation 1992, 4:117-126.

Kwang, J. et al. "Cloning, Expression, and Sequence Analysis of the ORF4 Gene of the Porcine Reproductive and Respiratory Syndrome Virus MN-1b" Journal of Veterinary Diagnostic Investigation 1994, 6:293-296.

Mardassi, H. et al. "Molecular Analysis of the ORFs 3 to 7 of Porcine Reproductive and Respiratory Syndrome Virus, Quebec Reference Strain" Archives of Virology 1995, 140:1405-1418.

(Continued)

Primary Examiner — Shanon A Foley (74) Attorney, Agent, or Firm — Gloria K. Szakiel; Barbara L. Renda

(57) ABSTRACT

This invention provides a trivalent immunogenic composition including a soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation; a porcine circovirus type 2 (PCV2) antigen; and a PRRS virus antigen, wherein the soluble portion of the *M. hyo* preparation is substantially free of both (i) IgG and (ii) immunocomplexes comprised of antigen bound to immunoglobulin.

21 Claims, 13 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

8,187,588	B2	5/2012	Chu et al.		
8,444,989	B1	5/2013	Ohnesorge et	al.	
2002/0114817	A1	8/2002	Liem et al.		
2009/0317423	A1	12/2009	Roof et al.		
2012/0052514	A1	3/2012	Allen et al.		
2013/0266603	A1*	10/2013	Nitzel et al.		424/186.1

FOREIGN PATENT DOCUMENTS

EP	0595436 A2	5/1994
EP	2 275 132 A2	1/2011
GB	2282811	4/1995
WO	WO 91/03157	3/1991
WO	WO 91/18627	12/1991
WO	WO 92/21375	12/1992
WO	WO 93/03670	3/1993
WO	WO 93/07898	4/1993
WO	WO 93/10216	5/1993
WO	WO 93/14196	7/1993
WO	WO 95/30437	11/1995
WO	WO 96/28472 A1	9/1996
WO	WO 96/40268	12/1996
WO	WO 02/10343 A2	2/2002
WO	WO 02/49666 A2	6/2002
WO	WO 03/049703 A2	6/2003
WO	2004058142 A2	7/2004
WO	WO 2007/116032 A1	10/2007
WO	WO 2009/126356 A2	10/2009
WO	WO 2011/141443 A1	11/2011
WO	WO 2012/063212 A1	5/2012

OTHER PUBLICATIONS

Meng, X.-J. et al. "Molecular Cloning and Nucleotide Sequencing of the 3'-Terminal Genomic RNA of the Porcine Reproductive and Respiratory Syndrome Virus" journal of General Virology 1994, 75:1795-1801.

Wensvoort, G. et al. "Mystery Swine Disease in the Netherlands: the Isolation of Lelystad Virus" The Veterinary Quarterly 1991, 13:121-130.

Kim et al. "Identification and Mapping of an Immunogenic Region of Mycoplasma Hyopneumoniae p65 Surface Lipoprotein Expressed in *Escherichia coli* from a Cloned Genomic Fragment" Infection and Immunity 1990, 58:2637-2643.

Futo et al. "Molecular Cloning of a 46-Kilodalton Surface Antigen (P46) Gene from Mycoplasma Hyopneumoniae: Direct Evidence of CGG Codon Usage for Arginine" Journal of Bacteriology 1995, 177:1915-1917.

Zhang et al, "Identification and Characterization of a Mycoplasma Hyopneumoniae Adhesin" Infection and Immunity 1995, 63: 1013-1029

King et al. "Characterization of the Gene Encoding Mhp1 from Mycoplasma Hyopneumoniae and Examination of Mhp1's Vaccine Potential" Vaccine 1997, 15:25-35.

Okada et al. "Protective Effect of Vaccination with Culture Supernate of M.Hyopneumoniae Against Experimental Infection in Pigs" Journal of Veterinary Medicine 2000, 47:527-533.

Scarman et al. "Identification of Novel Species-Specific Antigens of Mycoplasma Hyopneumoniae by Preparative SDS-PAGE ELISA Profiling" Microbiology 1997, 143:663-673.

Strait et al, "Efficacy of a Mycoplasma Hyopneumoniae Bacterin in Pigs Challenged With Two Contemporary Pathogenic Isolates of M Hyopneumoniae" Journal of Swine Health and Production 2008, 16:200-206.

Alexander et al. "Adjuvants and their Modes of Action" Livestock Production Science 1995, 42:153-162.

Hunter et al. "The Adjuvant Activity of Nonionic Block Polymer Surfactants" The Journal of Immunologists 1981, 127:1244-1250. Allison "Squalene and Squalane Emulsions as Adjuvants" Methods 1999, 19:87-93.

Goodwin et al. "Enzootic Pneumonia of Pigs: Immunization Attempts Inoculating Mycoplasma Suipneumoniae Antigen by Various Routes and with Different Adjuvants" British Veterinary Journal 1973, 129:456-464.

George et al. "Route-Related Variation in the Immunogenicity of Killed *Salmonella enteritidis* Vaccine: Role of Antigen Presenting Cells" Microbiol Immunol 1989, 33:479-488.

Byars et al. "Adjuvant Formulation for use in Vaccines to Elicit Both Cell-Mediated and Humoral Immunity" Vaccine 1987, 5:223-228.

Martinon et al. "Efficacy of a 'One Shot' Schedule of a Mycoplasma Hyopneumoniae Bacteria (Hyoresp)" Proceedings of the 15th IPVS Congress, Birmingham, England, Jul. 5-9, 1998, p. 284

Congress, Birmingham, England, Jul. 5-9, 1998, p. 284. Reynaud et al. "Clinical Field Trial With Mycoplasma Hyopneumoniae Bacteria (Hyoresp)" Proceedings of the 15th IPVS Congress, Birmingham, England, Jul. 5-9, 1998 p. 150.

Charlier et al. "Comparative Efficacy of Stellamune Mycoplasma and Hyoresp in Pigs Against an Experimental Challenge with Mycoplasma Hyopneumoniae" The 16th International Pig Veterinary Society Congress, Melbourne, Australia Sep. 17-20, 2000 p. 501.

Djordjevic et al. "Serum and mucosal antibody responses and protection in pigs vaccinated against mycoplasma hyopneumoniae with vaccines containing a denatured membrane antigen pool and adjuvant", Australian Veterinary Journal, vol. 75 No. 7, pp. 504-511, Jul. 1, 1997.

Chen et al. "Evaluation of immune response to recombinant potential protective antigens of mycoplasma hyopneumoniae delivered as cocktail DNA and/or recombinant protein vaccines in mice", Vaccine, vol. 26 No. 34, pp. 4372-4378, Aug. 12, 2008.

Drexler et al. "Efficacy of combined porcine reproductive and respiratory syndrome virus and mycoplasma hyopneumoniae vaccination in piglets", Veterinary Record, vol. 166 No. 3, pp. 70-74, Jan. 16, 2010

Grau-Roma et al. "Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2", Veterinary Journal, vol. 187 No. 1, pp. 23-32, Jan. 1, 2011.

Okada et al. "Cytological and immunological changes in bronchoalveolar lavage fluid and histological observation of lung lesions in pigs immunized with mycoplasma hyopneumoniae inactivated vaccine prepared from broth culture supernate", Vaccine, vol. 18, No. 25, pp. 2825-2831, Jun. 1, 2000.

Okada M.et al. "Evaluation of mycoplasma hyopneumoniae inactivated vaccine in pigs under field conditions", J. Vet. Med. Science, vol. 61 No. 10, pp. 1131-1135, Jun. 25, 1999.

Genzow Marika et al. "Concurrent vaccination of piglets with Ingel vac® PRRS MLV and with Ingelvac® M. hyo", Tieraerztliche Umschau, vol. 61 No. 12, pp. 649-652, Dec. 1, 2006.

Xin-Gang et al. "Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: Baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2", Journal of Virological Methods, vol. 179 No. 2, pp. 359-366, Nov. 28, 2011.

Ross "Characteristics of a protective activity of mycoplasma hyppneumoniae vaccine" American Journal of Veterinary Research, vol. 45 No, 10, pp. 1899-1905, Oct. 1984.

Fort Dodge Australia (2000) TechNote—Technical Update TF S04-00 (1) "Suvaxyn M.Hyo—How it works".

Sheldrake et al. "Evaluation of an enzyme-linked immunosorbent assay for the detection of Mycoplasma hyopneumoniae antibody in porcine serum" Australian Veterinary Journal vol. 69, No. 10, Oct. 1992.

* cited by examiner

Figure 1

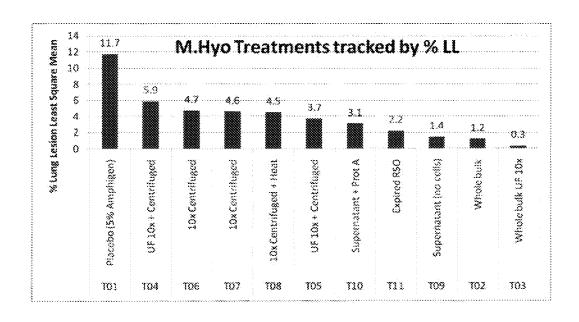


Figure 2

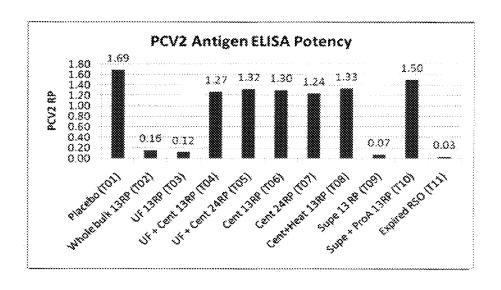


Figure 3

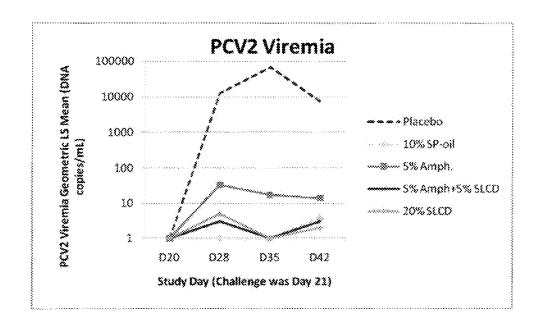


Figure 4

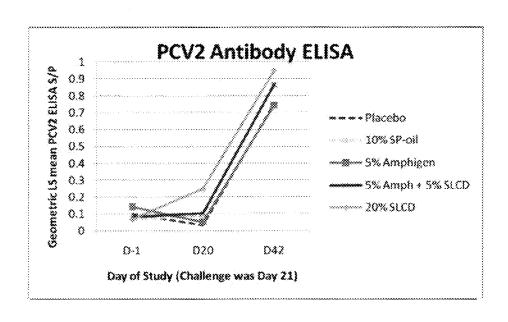


Figure 5

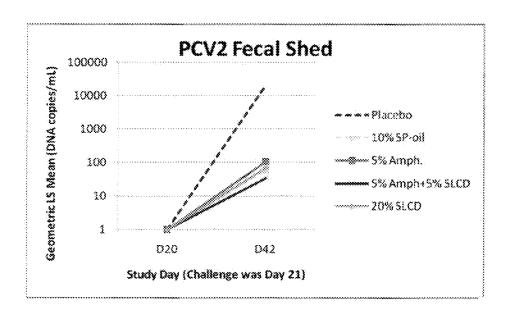


Figure 6

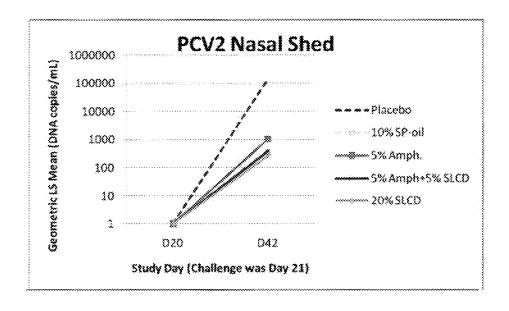


Figure 7A

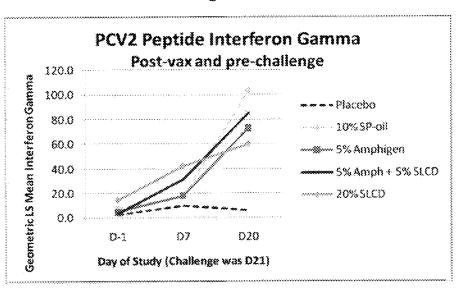


Figure 7B

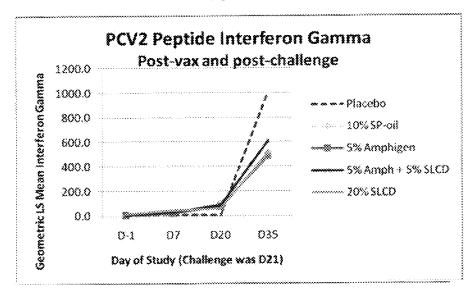


Figure 8A

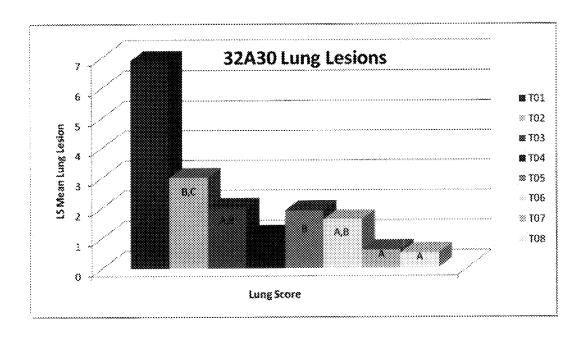
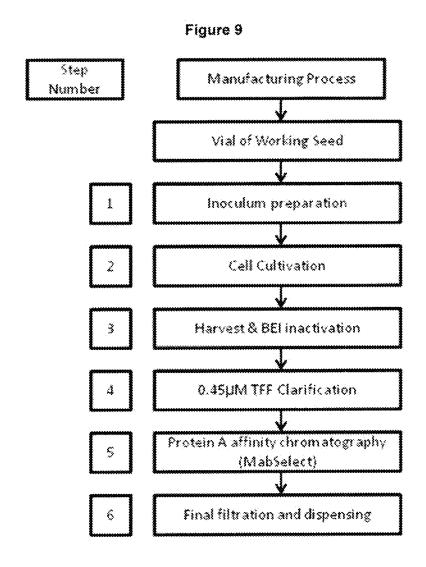



Figure 8B

Contrast	Mitigated Fraction	95% confidence interval
TO1 vs TO2	41.2	-5.9 to 76.5
T01 vs T03	64.7	29.4 to 100
T01 vs T04	76.5	41.2 to 100
T01 vs T05	73.3	33.3 to 100
T01 vs T06	62.5	25 to 100
T01 vs T07	87.5	62.5 to 100
T01 vs T08	88.2	64.7 to 100

Sep. 8, 2015

Sep. 8, 2015

Figure 10

	Difference from Water					
Preliminary Viricidal Activity	100% rehyd.	90/10	90/10			
	Lyophilized Titer	Liq. (DMEM) 90/10	Liq. (Ultra) 90/10	Avg Viricidal Activity		
20% SLCD	8.0	0.7	2.0	1.3		
0.2% Carbopol	0.3	-0.3	0.2	-0.1		
10% SP-Oil	0.2	0.0	0.0	0.0		
10% SP-Oil/0.2% Carbopol	0.3	-0.2	0.0	-0.1		
20% SLCD/10% SP-Oil	1.0	0.3	0.7	0.5		
20% SLCD/10% SP-Oil/0.2% Carbopol	0.2	0.0	0.5	0.3		
5% Amphigen (from 40% stock)	1.0	0.7	1.5	1.1		
2.5% Amphigen (from 40% stock)	NA	-0.2	NA	-0.2		
5% Amphigen (from 20% stock)	NA	0.8	NA	8.0		
2.5% Amphigen (from 20% stock)	NA	0.2	NA	0.2		
5% Amphigen (from 40% stock)	NA	1.3	NA	1.3		
2.5% Amphigen (from 40% stock)	NA	0.8	NA	0.8		
	NA		NA	0.8		

Figure 11

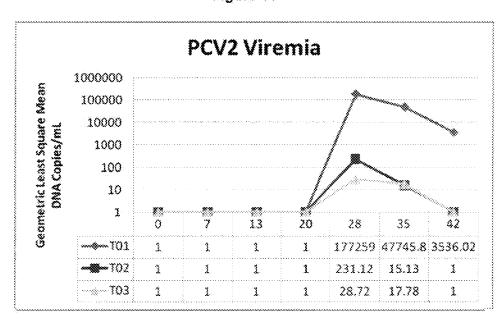


Figure 12

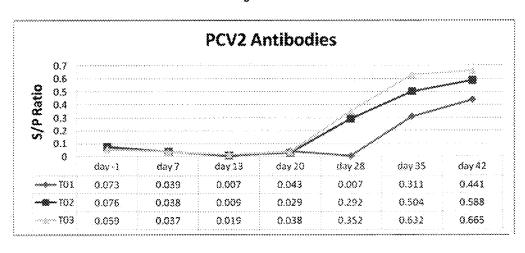


Figure 13

PCV/MYCOPLASMA HYOPNEUMONIAE/PRRS COMBINATION VACCINE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/620,189, filed Apr. 4, 2012, the contents of which are incorporated herein by reference in their entirety. ¹⁰

FIELD OF THE INVENTION

The present invention relates to porcine circovirus, *Mycoplasma hyopneumoniae* (*M. hyopneumoniae* or *M.hyo*), and 15 Porcine reproductive and respiratory syndrome (PRRS) virus. More particularly, the invention relates to a trivalent immunogenic composition including a soluble portion of an *M.hyo* whole cell preparation, a PCV2 antigen, and a PRRS virus antigen and its use in a vaccine for protecting pigs 20 against at least enzootic pneumonia and Post-weaning Multisystemic Wasting Syndrome (PMWS).

BACKGROUND OF THE INVENTION

Enzootic pneumonia in swine, also called mycoplasmal pneumonia, is caused by *M.hyo*. The disease is a chronic, non-fatal disease affecting pigs of all ages. Infected pigs show only mild symptoms of coughs and fever, but the disease has significant economic impact due to reduced feed efficiency 30 and reduced weight gain. Enzootic pneumonia is transmitted from pig to pig through the nasal passages by airborne organisms expelled from the lungs of infected pigs. The primary infection by *M.hyo* may be followed by secondary infection by other *mycoplasma* species (*Mycoplasma hyorhinis* and 35 *Mycoplasma flocculare*) as well as other bacterial pathogens.

M.hyo is a small, prokaryotic microbe capable of a free living existence, although it is often found in association with eukaryotic cells because it has absolute requirements for exogenous sterols and fatty acids. These requirements generally necessitate growth in serum-containing media. *M.hyo* is bounded by a cell membrane, but not a cell wall.

The physical association of mycoplasmas with the host cell surface is the basis for the development and persistence of enzootic pneumonia. *M.hyo* infects the respiratory tract of 45 swine, colonizing the trachea, bronchi, and bronchioles. The *mycoplasma* produces a ciliostatic factor which causes the cilia lining the respiratory passages to stop beating. Eventually, the cilia degenerate, leaving the pig prone to infection by secondary pathogens. Characteristic lesions of purple to gray 50 areas of consolidation are observed in infected animals. Surveys of slaughtered animals revealed lesions in 30 to 80% of swine. Results from 37 herds in 13 states indicated that 99% of the herds had hogs with pneumonia lesions typical of enzootic pneumonia. Therefore, the need for effective preventative and treatment measures are great.

Antibiotics such as tiamulin, trimethoprim, tetracyclines and lincomycin have some benefit, but are expensive and require prolonged use. Additionally, antibiotics have not been shown to effectively eliminate spread or reinfection of *M.hyo*. 60 Prevention by maintaining pathogen-free herds is sometimes possible but reintroduction of *M.hyo* often occurs. Due to the serious economic consequences of swine pneumonia, vaccines against *M.hyo* have been sought. Vaccines containing preparations of mycoplasmal organisms grown in serum-containing medium have been marketed, but raise concerns regarding adverse reactions induced by serum components

2

(such as immunocomplexes or non-immunogenic specific proteins) present in the immunizing material. Other attempts to provide *M.hyo* vaccines have been successful, but the disease remains widespread.

M.hyo and porcine circovirus type 2 (PCV2) are the two most prevalent pathogens that are encountered in the pig industry. Swine infected with PCV2 exhibit a syndrome commonly referred to as Post-weaning Multisystemic Wasting Syndrome (PMWS). PMWS is clinically characterized by wasting, paleness of the skin, unthriftiness, respiratory distress, diarrhea, icterus, and jaundice. In addition to PMWS, PCV2 has been associated with several other infections including pseudorabies, porcine reproductive and respiratory syndrome (PRRS). Glasser's disease, streptococcal meningitis, salmonellosis, postweaning colibacillosis, dietetic hepatosis, and suppurative bronchopneumonia. M.hyo is associated with enzootic pneumonia and has also been implicated as one of the major co-factors in the development of Porcine Circovirus Associated Disease (PCVAD).

Porcine reproductive and respiratory syndrome (PRRS) is caused by an arterivirus, which has a particular affinity for the macrophages particularly those found in the lung (alveolar macrophages). These macrophages ingest and remove invading bacteria and viruses, but not in the case of the PRRS virus (PRRSV). In the case of the PRRS virus, it multiplies inside the macrophages producing more virus and kills the macrophages. Once PRRSV has entered a herd, it tends to remain present and active indefinitely. Up to 40% of the macrophages are destroyed, which allows bacteria and other viruses to proliferate and do damage. A common example of this is the noticeable increase in severity of enzootic pneumonia in grower/finisher units when they become infected with PRRSV. More than half of weaning-age PRRS virus-negative pigs become infected before going to market.

What is needed is a PCV2/M.hyo/PRRS trivalent vaccine against PCV2, mycoplasma, and PRRSV infection in swine. It would be highly desirable to provide a single dose trivalent vaccine. Preferably, the PCV2/M.hyo component of the vaccine would be provided as a ready-to-use in one bottle liquid composition which can be easily combined with the PRRSV component such that all antigens can be administered to the pig simultaneously.

SUMMARY OF THE INVENTION

The present invention provides a trivalent immunogenic composition including a soluble portion of a *Mycoplasma hyopneuamoniae* (*M.hyo*) whole cell preparation; a porcine circovirus type 2 (PCV2) antigen; and a porcine reproductive and respiratory syndrome (PRRS) virus antigen, wherein the soluble portion of the *Mhyo* preparation is substantially free of both (i) IgG and (ii) immunocomplexes comprised of antigen bound to immunoglobulin. In one aspect, the soluble portion of the *M.hyo* whole cell preparation has been treated with protein-A or protein-G prior to being added to the immunogenic composition. In a further aspect, the soluble portion of the *M. hyo* preparation and the PCV2 antigen are in the form of a ready-to-use liquid composition.

In one embodiment, the PRRS virus antigen is a genetically modified live virus. In another embodiment, the genetically modified live PRRS virus is in the form of a lyophilized composition.

In one embodiment, the soluble portion of the *M.hyo* preparation includes at least one *M.hyo* protein antigen. In another embodiment, the soluble portion of the *M.hyo* preparation includes two or more *M.hyo* protein antigens.

In one embodiment, the PCV2 antigen is in the form of a chimeric type-1-type 2 circovirus, the chimeric virus including an inactivated recombinant porcine circovirus type 1 expressing the porcine circovirus type 2 ORF2 protein. In another embodiment, the PCV2 antigen is in the form of a recombinant ORF2 protein. In still another embodiment, the recombinant ORF2 protein is expressed from a baculovirus vector.

In some embodiments, the trivalent composition of the present invention elicits a protective immune response against *M.hyo*, PCV2, and PRRS virus. In other embodiments, the immunogenic composition of the present invention further includes at least one additional antigen. In one embodiment, the at least one additional antigen is protective against a microorganism that can cause disease in pigs.

In one embodiment, the microorganism includes bacteria, viruses, or protozoans. In another embodiment, the microorganism is selected from, but is not limited to, the following: porcine parvovirus (PPV), Haemophilus parasuis, Pas- 20 teurella multocida, Streptococcum suis, Staphylococcus hyicus, Actinobacilllus pleuropneumoniae, Bordetella bronchiseptica, Salmonella choleraesuis, Salmonella enteritidis, Erysipelothrix rhusiopathiae, Mycoplama hyorhinis, Mycoplasma hyosynoviae, leptospira bacteria, Lawsonia intracel- 25 lularis, swine influenza virus (SIV), Escherichia coli antigen, Brachyspira hyodysenteriae, porcine respiratory coronavirus, Porcine Epidemic Diarrhea (PED) virus, rotavirus, Torque teno virus (TiTV). Porcine Cytomegalovirus, Porcine enteroviruses, Encephalomyocarditis virus, a pathogen caus- 30 ative of Aujesky's Disease, Classical Swine fever (CSF) and a pathogen causative of Swine Transmissable Gastroenteritis, or combinations thereof.

In some embodiments, the composition of the present invention further includes an adjuvant. In one embodiment, 35 the adjuvant is selected from, but is not limited to, the following: an oil-in-water adjuvant, a polymer and water adjuvant, a water-in-oil adjuvant, an aluminum hydroxide adjuvant, a vitamin E adjuvant and combinations thereof. In another embodiment, the composition of the present invention further 40 includes a pharmaceutically acceptable carrier.

In certain embodiments, the composition of the present invention elicits a protective immune response against *M.hyo*, PCV2 and PRRS virus when administered as a single dose administration.

The present invention also provides a method of immunizing a pig against *M.hyo*, PCV2, and PRRS virus. This method includes administering to the pig a trivalent immunogenic composition including a soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation; a porcine 50 circovirus type 2 (PCV2) antigen; and a PRRS virus antigen, wherein the soluble portion of the *M.hyo* preparation is substantially free of both (i) IgG and (ii) immunocomplexes comprised of antigen bound to immunoglobulin.

In one embodiment of the method of the present invention, 55 the trivalent composition is administered intramuscularly, intradermally, transdermally, or subcutaneously. In another embodiment of the method of this invention, the trivalent composition is administered in a single dose.

In a further embodiment, the composition is administered 60 to pigs having maternally derived antibodies against at least one of *M.hyo*, PCV2, and PRRS virus. In a still further embodiment, the composition, is administered to pigs having maternally derived antibodies against *M.hyo*, PCV2, and PRRS virus.

In one embodiment, the composition is administered to pigs at 3 weeks of age or older.

4

The present invention also provides a method for preparing an immunogenic composition according to the present invention. This method includes i) culturing M.hyo in a suitable media over periods ranging from 18-144 hours; ii) subsequently inactivating the M.hyo culture; iii) harvesting the inactivated culture fluid, wherein the inactivated culture fluid comprises an M. hyo whole cell preparation comprising both a soluble liquid fraction and insoluble cellular material; iv) separating the soluble liquid fraction from the insoluble cellular material; v) substantially removing both IgG and antigen/immunoglobulin immunocomplexes from the separated soluble liquid fraction to form a soluble portion of the M.hyo whole cell preparation; and vi) subsequently combining the soluble portion of the M.hyo whole cell preparation with a PCV2 antigen and a PRRS virus antigen. In one embodiment, step vi) includes combining a ready-to-use liquid composition comprising both the PCV2 antigen and the M. hyo soluble portion with a lyophilized PRRS virus antigen.

In one embodiment, a kit according to the present invention includes a first bottle (or other suitable receptable) comprising a composition including both a PCV2 antigen and the soluble portion of a Mycoplasma hyopneumoniae, M.hyo) whole cell preparation, wherein the soluble portion of the M.hyo preparation is substantially free of both (i) IgG and (ii) antigen/immunoglobulin immunocomplexes; and a second bottle comprising PRRS virus antigen. In one embodiment, the composition in the first bottle is provided as a ready-to-use liquid composition. In a further embodiment, the PRRS virus antigen component of the kit is in the form of a lyophilized composition. In another embodiment, the kit includes an instruction manual with directions to combine the contents from the first bottle with the contents of the second bottle. In yet another embodiment, the instruction manual further includes directions to administer the combined contents of the first and second bottles to a pig.

BRIEF DESCRIPTION OF THE DRAWINGS

vitamin E adjuvant and combinations thereof. In another embodiment, the composition of the present invention further includes a pharmaceutically acceptable carrier.

In certain embodiments, the composition of the present invention elicits a protective immune response against *M.hyo*,

FIG. 1 is a graph showing the efficacy of *M.hyo* monovalent vaccines prepared with *M. hyo* antigens from different treatments (T02-T10 described in Example 3) vs. a placebo (T01). The results are presented as % Lung Lesion Least Square Mean values.

FIG. 2 is a graph showing the PCV2 antigen potency results (PCV2 antigen ELISA) of *M.hyo* vaccines in combination with killed PCV Type1-Type2 chimeric virus. The chimeric virus was included in the compositions at an initial level of about 1.6≤RP. The status of each sample is expressed as relative potency (RP).

FIG. 3 is a graph showing the PCV2 viremia results (PCV2 Quantitative PCR) observed with PCV/*M.hyo* vaccine formulations employing different adjuvant platforms.

FIG. 4 is a graph showing the PCV2 antibody ELISA (S/P) serological results observed with PCV/*M.hyo* vaccine formulations employing different adjuvant platforms on days 1, 20, and 42 of challenge.

FIG. **5** is a graph showing the PCV2 fecal shed obtained with the T02-T04 treatments described in Example 7 vs. a placebo (T01). The results are expressed as PCV2 DNA copies/ml.

FIG. 6 is a graph showing the PCV2 nasal shed obtained with the T02-T04 treatments described in Example 7 vs. the placebo (T01). The results are expressed as PCV2 DNA copies/ml.

FIGS. 7 (A & B) are graphs showing the results of an interferon-gamma (IFN-γ) test that measures PCV2-specific cellular mediated immune (CMI) responses. The results of

pos-vaccination/pre-challenge are presented in FIG. 7A, and the results of post-vaccination/post-challenge are presented in FIG. 7B. Stimulation of 5×10^6 cells was considered significant

FIG. **8** depicts the *M.hyo* efficacy of the PCV2/*M.hyo* 5 experimental vaccine formulations in SP-oil. The lung scores for formulations employing *M.hyo* treatments T02-T08 vs. a placebo (T01) are depicted graphically in FIG. **8**A. The table in FIG. **8**B depicts the contrast of treatments T02-T08 with the placebo.

FIG. **9** is a flowchart which shows one embodiment of a manufacturing process used to prepare PCV2-compatible Protein-A treated *M.hyo* antigen.

FIG. 10 is a table showing the adjuvant evaluation for virucidal activity against PRRS virus.

FIG. 11 is a graph showing the PCV2 viremia results (PCV2 Quantitative PCR) observed with PCV2/M.hyo/PRRS experimental vaccine formulations.

FIG. **12** is a graph showing the PCV2 ELISA results observed with PCV2/*M.hyo*/PRRS 1.5 experimental vaccine ²⁰ formulations on days –1, 7, 13, 20, 28, 35 and 42 of the study (challenge was day 21).

FIG. 13 is a graph showing the PCV2 fecal shed obtained with the T02 and T03 treatments (PCV2/*M.hyo*/PRRS experimental vaccine formulations) described in Example 14 vs. the 25 placebo (T01).

BRIEF DESCRIPTION OF THE SEQUENCES

SEQ ID NO: 1 is one embodiment of a nucleotide sequence 30 encoding p46 from the P-5722 strain of *M.hyo*;

SEQ ID NO: 2 is one embodiment of an amino acid sequence corresponding to p46 from the P-5722 strain of *M.hyo*;

SEQ ID NO: 3 is one embodiment of a nucleotide sequence encoding p97 from the P-5722 strain of *M.hyo*;

SEQ ID NO: 4 is one embodiment of an amino acid sequence corresponding to p97 from the P-5722 strain of *M.hyo*;

SEQ ID NO: 5 is one embodiment of a genomic sequence encoding a chimeric PCV1-2 virus:

SEQ ID NO: 6 is one embodiment of a nucleotide sequence 40 corresponding to ORF2 of a porcine circovirus;

SEQ ID NO: 7 is one embodiment of an amino acid sequence corresponding to the ORF2 polypeptide of a porcine circovirus;

SEQ ID NO: 8 is one embodiment of a genomic sequence 45 encoding a chimeric PCV1-2 virus;

SEQ ID NO: 9 is one embodiment of a nucleotide sequence corresponding to ORF2 of a porcine circovirus;

SEQ ID NO: 10 is one embodiment of an amino acid sequence corresponding to the ORF2 polypeptide of a porcine circovirus;

SEQ ID NO: 11 is one embodiment of an amino acid sequence corresponding to the ORF2 polypeptide of a porcine circovirus;

SEQ ID NO: 12 is one embodiment of a nucleotide sequence 55 encoding the amino acid sequence of SEQ ID NO: 11;

SEQ ID NO: 13 is one embodiment of an amino acid sequence corresponding to the ORF2 polypeptide of a porcine circovirus;

SEQ ID NO: 14 is one embodiment of a nucleotide sequence 60 encoding the amino acid sequence of SEQ ID NO: 13:

SEQ ID NO: 15 is one embodiment of an amino acid sequence corresponding to the ORF2 polypeptide of a porcine circovirus;

SEQ ID NO: 16 is one embodiment of a genomic sequence of 65 a non-virulent form of the North American PRRS virus isolate designated P129; and

6

SEQ ID NO: 17 is one embodiment of a nucleotide sequence corresponding to ORF2 to ORF5 of the PRRSV isolate designated ISU4-55.

SEQ ID NO: 18 is one embodiment of a nucleotide sequence corresponding to ORF6 and ORF7 of the PRRSV isolate designated ISU-55.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a trivalent immunogenic composition including a soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation; a porcine circovirus type 2 (PCV2) antigen, and a porcine reproductive and respiratory syndrome (PRRS) virus antigen, wherein the soluble portion of the *M.hyo* preparation is substantially free of both (i) IgG and (ii) immunocomplexes comprised of antigen bound to immunoglobulin. In one embodiment, the trivalent composition elicits a protective immune response in a pig against PCV2, *M.hyo*, and PRRS virus.

Applicants have surprisingly discovered that the insoluble fraction of the *M.hyo* whole cell preparation is non-immunogenic. In contrast, the IgG-free *M.hyo* soluble preparation is immunogenic and can be effectively combined with antigens from other pathogens, such as PCV2 and PRRSV, without analytical or immunological interference between the antigens. This makes the *M.hyo* soluble preparation an effective platform for the multivalent vaccines of this invention. Applicants have also surprisingly discovered that removing the immunoglobulin and the insoluble cell debris from the *M.hyo* preparation enhances the safety of the immunogenic composition

As used in the specification and claims, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a protein antigen" includes a plurality of protein antigens, including mixtures thereof.

As used herein, the term "comprising" is intended to mean that the compositions and methods include the recited elements, but do not exclude other elements.

As defined herein, a soluble portion of an *M.hyo* whole cell preparation refers to a soluble liquid fraction of an *M.hyo* whole cell preparation after separation of the insoluble material and substantial removal of IgG and antigen-bound immunocomplexes. The *M.hyo* soluble portion may alternatively be referred to herein as the supernatant fraction, culture supernatant and the like. It includes *M.hyo*-expressed soluble proteins (*M.hyo* protein antigens) that have been separated or isolated from insoluble proteins, whole bacteria, and other insoluble *M.hyo* cellular material by conventional means, such as centrifugation, filtration, or precipitation. In addition to including *M.hyo*-specific soluble proteins, the soluble portion of the *M.hyo* whole cell preparation also includes heterologous proteins, such as those contained in the culture medium used for *M.hyo* fermentation.

The term "antigen" refers to a compound, composition, or immunogenic substance that can stimulate the production of antibodies or a T-cell response, or both, in an animal, including compositions that are injected or absorbed into an animal. The immune response may be generated to the whole molecule, or to a portion of the molecule (e.g., an epitope or hapten).

As defined herein, an "immunogenic or immunological composition", refers to a composition of matter that comprises at least one antigen which elicits an immunological response in the host of a cellular and or antibody-mediated immune response to the composition or vaccine of interest.

The term "immune response" as used herein refers to a response elicited in an animal. An immune response may refer to cellular immunity (CMI); humoral immunity or may involve both. The present invention also contemplates a response limited to a part of the immune system. Usually, an 5 "immunological response" includes, but is not limited to, one or more of the following effects: the production or activation of antibodies, B cells, helper T cells, suppressor T cells, and/or cytotoxic T cells and/or yd T cells, directed specifically to an antigen or antigens included in the composition or 10 vaccine of interest. Preferably, the host will display either a therapeutic or protective immunological response such that resistance to new infection will be enhanced and/or the clinical severity of the disease reduced. Such protection will be demonstrated by either a reduction or lack of symptoms nor- 15 mally displayed by an infected host, a quicker recovery time and/or a lowered viral titer in the infected host.

As used herein, the term "immunogenicity" means capable of producing an immune response in a host animal against an the protective immunity elicited by a vaccine against a specific infectious organism.

An "adjuvant" as used herein means a composition comprised of one or more substances that enhances the immune response to an antigen(s). The mechanism of how an adjuvant 25 operates is not entirely known. Some adjuvants are believed to enhance the immune response by slowly releasing the antigen, while other adjuvants are strongly immunogenic in their own right and are believed to function synergistically.

As used herein, the term "multivalent" means a vaccine 30 containing more than one antigen whether from the same species (i.e., different isolates of Mycoplasma hyopneumoniae), from a different species (i.e. isolates from both Pasteurella hemolytica and Pasteurella multocida), or a vaccine containing a combination of antigens from different genera 35 (for example, a vaccine comprising antigens from *Pasteurella* multocida, Salmonella, Escherichia coli, Haemophilus somnus and Clostridium).

The term "pig" or "piglet" as used herein means an animal of porcine origin, while "sow" refers to a female of reproduc- 40 tive age and capability. A "gilt" is a female pig who has never been pregnant.

As used herein, the term "virulent" means an isolate that retains its ability to be infectious in an animal host.

"Inactivated vaccine" means a vaccine composition con- 45 taining an infectious organism or pathogen that is no longer capable of replication or growth. The pathogen may be bacterial, viral, protozoal or fungal in origin. Inactivation may be accomplished by a variety of methods including freeze-thawing, chemical treatment (for example, treatment with thime- 50 rosal or formalin), sonication, radiation, heat or any other convention means sufficient to prevent replication or growth of the organism while maintaining its immunogenicity.

The term "variant" as used herein refers to a polypeptide or a nucleic acid sequence encoding a polypeptide, that has one 55 or more conservative amino acid variations or other minor modifications such that the corresponding polypeptide has substantially equivalent function when compared to the wildtype polypeptide.

"Conservative variation" denotes the replacement of an 60 amino acid residue by another biologically similar residue, or the replacement of a nucleotide in a nucleic acid sequence such that the encoded amino acid residue does not change or is another biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic 65 residue, such as isoleucine, valine, leucine or methionine for another hydrophobic residue, or the substitution of one polar

residue, such as the substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like. The term "conservative variation" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.

As used herein, the terms "pharmaceutically acceptable carrier" and "pharmaceutically acceptable vehicle" are interchangeable and refer to a fluid vehicle for containing vaccine antigens that can be injected into a host without adverse effects. Suitable pharmaceutically acceptable carriers known in the art include, but are not limited to, sterile water, saline, glucose, dextrose, or buffered solutions. Carriers may include auxiliary agents including, but not limited to, diluents, stabilizers (i.e., sugars and amino acids), preservatives, wetting agents, emulsifying agents, pH buffering agents, viscosity enhancing additives, colors and the like.

As used herein, the term "vaccine composition" includes at antigen or antigens. This immune response forms the basis of 20 least one antigen or immunogen in a pharmaceutically acceptable vehicle useful for inducing an immune response in a host. Vaccine compositions can be administered in dosages and by techniques well known to those skilled in the medical or veterinary arts, taking into consideration such factors as the age, sex, weight, species and condition of the recipient animal, and the route of administration. The route of administration can be percutaneous, via mucosal administration (e.g., oral, nasal, anal, vaginal) or via a parenteral route (intradermal, transdermal, intramuscular, subcutaneous, intravenous, or intraperitoneal). Vaccine compositions can be administered alone, or can be co-administered or sequentially administered with other treatments or therapies. Forms of administration may include suspensions, syrups or elixirs, and preparations for parenteral, subcutaneous, intradermal, intramuscular or intravenous administration (e.g., injectable administration) such as sterile suspensions or emulsions. Vaccine compositions may be administered as a spray or mixed in food and/or water or delivered in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose, or the like. The compositions can contain auxiliary substances such as wetting or emulsifying agents, pH buffering agents, adjuvants, gelling or viscosity enhancing additives, preservatives, flavoring agents, colors, and the like, depending upon the route of administration and the preparation desired. Standard pharmaceutical texts, such as "Remington's Pharmaceutical Sciences," 1990 may be consulted to prepare suitable preparations, without undue experimentation.

> "North American PRRS virus" means any PRRS virus having genetic characteristics associated with a North American PRRS virus isolate, such as, but not limited to the PRRS virus that was first isolated in the United. States around the early 1990's (see, e.g., Collins, J. E., et al., 1992, J. Vet. Diagn. Invest. 4:117-126); North American PRRS virus isolate MN-1b (Kwang, J. et al., 1994, J, Vet. Diagn. Invest. 6:293-296); the Quebec LAF-exp91 strain of PRRSV (Mardassi, H. et al., 1995, Arch. Virol. 140:1405-1418); and North American PRRS virus isolate VR 2385 (Meng, X.-J et al., 1994, J. Gen. Virol. 75:1795-1801). Additional examples of North American PRRS virus strains are described herein. Genetic characteristics refer to genomic nucleotide sequence similarity and amino acid sequence similarity shared by North American PRRS virus strains. Chinese PRRS virus strains generally evidence about 80-93% nucleotide sequence similarity with North American strains.

> "European PRRS virus" refers to any strain of PRRS virus having the genetic characteristics associated with the PRRS

virus that was first isolated in Europe around 1991 (see, e.g., Wensvoort, G., et al, 1991, Vet. Q. 13:121-130). "European PRRS virus" is also sometimes referred to in the art as "Lelystad virus". Further examples of European PRRS virus strains are described herein.

A genetically modified virus is "attenuated" if it is less virulent than its unmodified parental strain. A strain is "less virulent" if it shows a statistically significant decrease in one or more parameters determining disease severity. Such parameters may include level of viremia, fever, severity of respiratory distress, severity of reproductive symptoms, or number or severity of lung lesions, etc.

An "Infectious clone" is an isolated or cloned genome of the disease agent (e.g. viruses) that can be specifically and purposefully modified in the laboratory and then used to 15 re-create the live genetically modified organism. A live genetically modified virus produced from the infectious clone can be employed in a live viral vaccine. Alternatively, inactivated virus vaccines can be prepared by treating the live virus derived from the infectious clone with inactivating agents 20 such as formalin or hydrophobic solvents, acids, etc., by irradiation with ultraviolet light or X-rays, by heating, etc.

All currently available *M.hyo* and *M.hyo* combination vaccines are made from killed whole cell *mycoplasma* preparations (bacterins). In contrast, the present invention employs a 25 soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation for combination with the PCV2 and PRRSV antigens, wherein the soluble portion of the *M. hyo* preparation is substantially free of both (i) IgG and (ii) immunocomplexes comprised of antigen bound to immunoglobulin.

M.hyo has absolute requirements for exogenous sterols and fatty acids. These requirements generally necessitate growth of *M.hyo* in serum-containing media, such as porcine serum. Separation of the insoluble material from the soluble portion 35 of the *M.hyo* whole cell preparation (e.g., by centrifugation, filtration, or precipitation) does not remove the porcine IgG or immune complexes. In one embodiment of the present invention, the M.hyo soluble portion is treated with protein-A or protein-G in order to substantially remove the IgG and 40 immune complexes contained in the culture supernatant. In this embodiment, it is understood that protein A treatment occurs post-M.hyo fermentation. This is alternatively referred to herein as downstream protein A treatment. In another embodiment, upstream protein A treatment of the growth 45 media (i.e., before *M.hyo* fermentation) can be employed. Protein A binds to the Fc portion of IgG. Protein G binds preferentially to the Fc portion of IgG, but can also bind to the Fab region. Methods for purifying/removing total IgG from crude protein mixtures, such as tissue culture supernatant, 50 serum and ascites fluid are known in the art.

In some embodiments, the soluble portion of the *M.hyo* preparation includes at least one *M.hyo* protein antigen. In other embodiments, the soluble portion of the *M.hyo* preparation includes two or more *M.hyo* protein antigens.

In one embodiment, the *M.hyo* supernatant fraction includes one or more of the following *M.hyo* specific protein antigens: *M.hyo* proteins of approximately 46 kD (p46), 64 kD (p64) and 97 kD (p97) molecular weights. In another embodiment, the supernatant fraction at least includes the 60 p46, p64 and p97 *M.hyo* protein antigens. The *M.hyo* protein of approximately 64 kD (p64) may be alternatively referred to herein as the p65 surface antigen from *M.hyo* described by Kim et al. [Infect. Immun. 58(8):2637-2643 (1990)], as well as in U.S. Pat. No. 5,788,962.

Futo et al. described the cloning and characterization of a 46kD surface protein from *M.hyo*, which can be employed in

10

the compositions of this invention [J. Bact 177: 1915-1917 (1995)]. In one embodiment, the *M.hyo* culture supernatant includes the p46 whose corresponding nucleotide and amino acid sequences from the P-5722 strain are set forth in SEQ ID NOs: 1 and 2, respectively. It is further contemplated that variants of such p46 sequences can be employed in the compositions of the present invention, as described below.

Zhang et al. described and characterized a p97 adhesin protein of *M.hyo* [Infect. Immmun. 63: 1013-1019, 1995]. Additionally, King et al. described a 12413 protein termed Mhp1 from the P-5722 strain of *M.hyo* and presented data suggesting that Mhp1 and p97 are the same protein [Vaccine 15:25-35 (1997)]. Such p97 proteins can be employed in the compositions of this invention. In one embodiment, the *M.hyo* culture supernatant includes the p97 whose corresponding nucleotide and amino acid sequences from the P-5722 strain are set forth in SEQ ID NOs: 3 and 4, respectively. It is further contemplated that variants of such p97 sequences can be employed in the compositions of the present invention, as described below.

The *M.hyo* culture supernatant may include further *M.hyo* specific protein antigens such as, but not limited to, proteins of approximately 41 kD (p41), 42 kD (p42), 89 kD (p89), and 65 kD (p65). See, Okada et al., 2000, J. Vet. Med. B 47:527-533 and Kim et al., 1990, Infect. Immun. 58(8):2637-2643. In addition, the *M.hyo* culture supernatant can include *M.hyo* specific protein antigens of approximately 102 kD (p102) and 216 kD) (p216). See, U.S. Pat. Nos. 6,162,435 and 7,419,806 to Minnion et al.

Any M.hyo strain may be used as a starting material to produce the soluble portion of the M.hyo preparation of the compositions of the present invention. Suitable strains of M.hyo may be obtained from commercial or academic sources, including depositories such as the American Type Culture Collection (ATCC) (Manassas, Va.) and the NRRL Culture Collection (Agricultural Research Service, U.S. Department of Agriculture, Peoria, Ill.), The ATCC alone lists the following six strains of M.hyo for sale: M.hyo ATCC 25095, M.hyo ATCC 25617, M.hyo ATCC 25934, M.hyo ATCC 27714, M.hyo ATCC 27715, and M.hyo ATCC 25934D. A preferred strain of M.hyo for use in the embodiments of this invention is identified as strain P-5722-3, ATCC #55052, deposited on May 30, 1990 pursuant to the accessibility rules required by the U.S. Patent and Trademark Office. In view of the widespread dissemination of the disease, strains may also be obtained by recovering M. hyo from lung secretions or tissue from swine infected with known strains causing mycoplasmal pneumonia in swine.

It is understood by those of skill in the art that variants of the M.hyo sequences can be employed in the compositions of the present invention. Such variants could vary by as much as 10-20% in sequence identity and still retain the antigenic characteristics that render it useful in immunogenic compositions. Preferably, the M.hyo variants have at least 80%, preferably at least 85%, more preferably at least 90%, even more preferably at least 95% sequence identify with the filllength genomic sequence of the wild-type M.hvo strain. The antigenic characteristics of an immunological composition can be, for example, estimated by the challenge experiment as provided in the Examples. Moreover, the antigenic characteristic of a modified M.hyo antigen is still retained when the modified antigen confers at least 70%, preferably 80%, more preferably 90% of the protective immunity as compared to the wild-type M.hyo protein.

In one embodiment, *M.hyo* soluble p46 antigen is included in the compositions of the invention at a final concentration of about 1.5 μg/ml to about 10 μg/ml, preferably at about 2 μg/ml

to about $6 \mu g/ml$. It is noted that p46 is the protein used for the M.hyo potency test (see example section below). In another embodiment, the M.hyo antigen can be included in the compositions at a final amount of about 5.5% to about 35% of the M.hyo whole culture protein A-treated supernatant.

The *M.hyo* soluble preparation is both safe and efficacious against M.hvo and is suitable for single dose administration. In addition, Applicants have surprisingly discovered that the M.hyo soluble preparation can be effectively combined with antigens from other pathogens, including PCV2 and PRRS virus, without immunological interference between the antigens. This makes the M.hyo soluble preparation an effective platform for multivalent vaccines, including the PCV2/M. hyo/PRRS combination vaccine of this invention. The PCV2 15 and PRRS virus antigens may be given concurrently with the M.hyo composition (i.e., as three separate single vaccines), but preferably the *M.hyo* soluble preparation and the PCV2 antigen are combined together in the form of a ready-to-use liquid composition. This ready-to-use PCV2 M.hyo liquid 20 composition can then be combined with the PRRS virus antigen such that all antigens can be administered simultaneously to the pig. In some embodiments, the PRRS virus antigen is in a lyophilized state and the PCV2/M.hyo liquid composition can be used to re-hydrate the lyophilized PRRS virus antigen, 25 thereby forming the trivalent composition.

In one embodiment, the immunogenic PCV2 *M.hyo*/PRRS compositions of the present invention include at least one additional antigen. In one embodiment, the at least one additional antigen is protective against a microorganism that can 30 cause disease in pigs.

In some embodiments, the at least one additional antigen component is protective against bacteria, viruses, or protozoans that are known to infect pigs. Examples of such microorganisms include, but are not limited to, the following: porcine 35 parvovirus (PPV), Haemophilus parasuis, Pasteurella multocida, Streptococcum suis, Staphylococcus hyicus, Actinobacilllus pleuropneumoniae, Bordetella bronchiseptica, Salmonella choleraesuis, Salmonella enteritidis, Erysipelothrix rhusiopathiae, Mycoplama hyorhinis, Mycoplasma hyosyn- 40 oviae, leptospira bacteria, Lawsonia intracellularis, swine influenza virus (SIV), Escherichia coli antigen, Brachyspira hyodysenteriae, porcine respiratory coronavirus, Porcine Epidemic Diarrhea (PIED) virus, rotavirus, Torque teno virus (TTV), Porcine Cytomegalovirus, Porcine enteroviruses. 45 Encephalomyocarditis virus, a pathogen causative of Aujesky's Disease, Classical Swine fever (CSF) and a pathogen causative of Swine Transmissable Gastroenteritis, or combinations thereof.

In one embodiment, a PCV2/M.hyo component of the 50 trivalent vaccine according to the present invention is provided as a ready-to-use in one bottle liquid composition. Such a ready-to-use composition requires no mixing of separate PCV2 and M.hyo monovalent vaccines, so there is no risk of contamination or additional labor associated with mixing and 55 no requirement to use the mixture within a few hours. Also, a one-bottle PCV2/M.hyo component cuts waste and refrigerator storage space in half.

In some embodiments, the PCV2 antigen component of an PCV2/M.hyo/PRRS combination vaccine is in the form of a 60 chimeric type-1-type 2 circovirus. The chimeric virus includes an inactivated recombinant porcine circovirus type 1 expressing the porcine circovirus type 2 ORF2 protein. Chimeric porcine circoviruses and methods for their preparation are described in WO 03/049703 A2, and also in U.S. Pat. Nos. 65 7,279,166 and 7,575,752, which are incorporated herein by reference in their entirety.

12

In one embodiment, the full-length DNA sequence of the genome of the chimeric PCV1-2 virus corresponds to SEQ ID NO: 5, or variants thereof as described below. In another embodiment, the immunogenic ORF2 capsid gene of the chimeric PCV1-2 virus corresponds to SEQ ID NO: 6. In a further embodiment, the amino acid sequence of the immunogenic ORF2 protein expressed by the chimeric PCV1-2 virus corresponds to SEQ ID NO: 7.

In yet another embodiment, the full-length DNA sequence of the genome of the chimeric PCV1-2 virus corresponds to SEQ ID NO: 8. In one embodiment, the immunogenic ORF2 capsid gene of the chimeric PCV1-2 virus corresponds to SEQ ID NO: 9. In a further embodiment, the amino acid sequence of the immunogenic ORF2 protein expressed by the chimeric PCV1-2 virus corresponds to SEQ ID NO: 10.

However, the PCV2 ORF2 DNA and protein of the chimeric PCV1-2 virus are not limited to the sequences described above since PCV2 ORF2 DNA and protein is a highly conserved domain within PCV2 isolates.

In some embodiments, the PCV2 antigen component of an *M.hyo*/PCV2/PRRS combination vaccine is in the form of a recombinant ORF2 protein. In one embodiment, the recombinant ORF2 protein is expressed from a baculovirus vector. Alternatively, other known expression vectors can be used, such as including, but not limited to, parapox vectors.

In one embodiment, the recombinant PCV2 ORF2 protein is that of SEQ ID NO: 11, which is encoded by SEQ ID NO: 12 (GenBank Accession No. AF086834). In another embodiment, the recombinant ORF2 protein is that of SEQ ID NO: 13, which is encoded by SEQ ID NO: 14. In yet another embodiment, the recombinant ORF2 protein corresponds to SEQ ID NO: 15. In still another embodiment, the recombinant PCV2 ORF2 protein corresponds to SEQ ID NO: 7. In a still further embodiment, the recombinant PCV2 ORF2 protein corresponds to SEQ ID NO: 10.

However, the present invention is not limited to the particular ORF2 DNA and protein sequences described above. Since PCV2 ORF2 DNA and protein is a highly conserved domain within PCV2 isolates, any PCV2 ORF2 is highly likely to be effective as the source of the PCV2 ORF2 DNA and/or polypeptide as used in the chimeric PCV1-2 virus or in the recombinant PCV2 protein.

An example of a suitable PCV2 isolate from which the PCV2 ORF2 DNA and protein sequences can be derived is PCV2 isolate number 40895 (deposited in the ATCC on Dec. 7, 2001 and assigned ATCC Patent Deposit Designation PTA-3914). The genomic (nucleotide) sequence of the PCV2 isolate number 40895 is available under GenBank accession number AF264042. Other examples of suitable PCV2 isolates from which the PCV2 ORF2 DNA and protein sequences can be derived include, but are not limited to, the following: Imp.999, Imp.1010-Stoon, Imp.1011-48121, and Imp.1011-48285. The GenBank accession numbers of the genomic sequences corresponding to these PCV2 isolates are AF055391. AF055392, AF055393 and AF055394, respectively.

In some forms, immunogenic portions of PCV2 ORF2 protein are used as the antigenic component in the composition. For example, truncated and/or substituted forms or fragments of PCV2 ORF2 protein may be employed in the compositions of the present invention.

It is understood by those of skill in the art that variants of the PCV2 sequences can be employed in the compositions of the present invention. Such variants could vary by as much as 10-20% in sequence identity and still retain the antigenic characteristics that render it useful in immunogenic compositions. Preferably, the PCV2 variants have at least 80%,

preferably at least 85%, more preferably at least 90%, even more preferably at least 95% sequence identify with the full-length genomic sequence of the wild-type PCV2 isolate. The antigenic characteristics of an immunological composition can be, for example, estimated by the challenge experiment as provided in the Examples. Moreover, the antigenic characteristic of a modified PCV2 antigen is still retained when the modified antigen confers at least 70%, preferably 80%, more preferably 90% of the protective immunity as compared to the wild-type PCV2 ORF2 protein.

The PCV2 antigen component is provided in the immunogenic composition at an antigen inclusion level effective for inducing the desired immune response, namely reducing the incidence of or lessening the severity of clinical signs resulting from PCV2 infection.

In one embodiment, a chimeric PCV1-2 virus is included in the trivalent compositions of the invention at a level of at least 1.0≤RP≤5.0, wherein RP is the Relative Potency unit determined by ELISA antigen quantification (in vitro potency test) compared to a reference vaccine. In another embodiment, a 20 chimeric PCV1-2 virus is included in the composition of the invention at a final concentration of about 0.5% to about 5% of 20-times (20×) concentrated bulk PCV1-2 antigen.

In another embodiment, the PCV2 ORF2 recombinant protein is included in the trivalent compositions of the invention 25 at a level of at least 0.2 μg antigen:ml of the final immunogenic composition ($\mu g/ml$). In a further embodiment, the PCV2 ORF2 recombinant protein inclusion level is from about 0.2 to about 400 $\mu g/ml$. In yet another embodiment, the PCV2 ORF2 recombinant protein inclusion level is from about 0.3 to about 200 $\mu g/ml$. In a still further embodiment, the PCV2 ORF2 recombinant protein inclusion level is from about 0.35 to about 100 $\mu g/ml$. In still another embodiment, the PCV2 ORF2 recombinant protein inclusion level is from about 0.4 to about 50 $\mu g/ml$.

In one embodiment, a trivalent immunogenic composition of the present invention includes the inventive combination of at least one *M.hyo* soluble antigen (e.g., two or more), a porcine circovirus type 2 (PCV2) antigen, and a PRRS virus antigen. In another embodiment, the composition elicits a 40 protective immune response in a pig against *M.hyo*, PCV2 and PRRS virus.

In one embodiment, a PCV2/*M.hyo*/PRRS combination vaccine is provided as a single-dose, 2-bottle vaccine. For example, in some embodiments, a PCV2/*M.hyo* combination 45 is provided as a stable liquid composition in a first bottle and a PRRS virus is provided in a lyophilized state in a second bottle. In some embodiments, additional porcine antigens can be added to either the first or the second bottle.

In one embodiment, the PRRS virus component is provided as a lyophilized, genetically modified live virus. Prior to administration, the PCV2/M.hyo liquid from a first bottle can be used to re-hydrate the PRRS virus in a second bottle so that all three antigens can be administered to the animal in a single-dose. It is noted that although PCV2/M.hyo/PRRS combination vaccines currently exist, they are provided as a single-dose, 3-bottle vaccine which requires the simultaneous administration of three separate vaccines (e.g., Ingelvac CircoFLEX®, Ingelvac MycoFLEX® and Ingelvac®PRRS MLV).

The PRRS etiological agent was isolated for the first time in The Netherlands, and named as Lelystad virus. This virus was described in WO 92/21375 (Stichting Centraal Diegeneeskundig Instituut). An isolate of the European PRRS virus was deposited in the Institut Pasteur of Paris, number I-1102. 65 The North American type was isolated almost simultaneously with the isolation of the European type virus, and is described

14

in WO-93/03760 (Collins et al.) An isolate of the North American type virus was deposited in the American Type Culture Collection (ATCC), number VR-2332.

Different strains have been isolated from both the European and North American virus types. WO 93/07898 (Akzo) describes a European strain, and vaccines derived from it, deposited in CNCM (Institut Pasteur), number I-1140. Also, WO 93/14196 (Rhone-Mericux) describes a new strain isolated in France, deposited in CNCM (Institut Pasteur), number I-1153. Furthermore, EP0595436B1 (Solvay) describes a new North American type strain, more virulent than the one initially described, and vaccines thereof. This strain has been deposited in ATCC, but the deposit number is not detailed in the patent application. In addition, ES2074950 BA (Cyanamid Iberica) and its counterpart GB2282811 B2 describe a so-called "Spanish strain", that is different from other European and North American strains. This "Spanish strain" has been deposited in European Animal Cell Culture Collection (EACCC), number V93070108.

Suitable PRRS virus antigens for use in the PCV2/M.hyo/PRRS compositions of the present invention include North American PRRS virus isolates, Chinese PRRS virus strains, and European PRRS virus strains, as well as genetically modified versions of such isolates/strains. In one embodiment, the PRRS virus antigen component employed in the compositions according to the present invention is a North American PRRS virus.

In some embodiments, the PRRS virus antigen component employed in the compositions of this invention is the North American PRRS virus isolate designated. P129 or a live, genetically modified version thereof. Preferably, the genetically modified PRRS virus is unable to produce a pathogenic infection yet is able to elicit an effective immunoprotective response against infection by the wild-type PRRS virus.

A genetically modified PRRS virus for use in the compositions of the invention can be produced from an infectious clone. The preparation of an infectious cDNA clone of the North American PRRS virus isolate designated P129 is described in U.S. Pat. No. 6,500,662 which is hereby incorporated fully by reference. The sequence of P129 cDNA is disclosed in Genbank Accession Number AF494042 and in. U.S. Pat. No. 6,500,662.

In one embodiment, the nucleotide sequence of a non-virulent form of P129 for use in the compositions of the present invention is represented by SEQ ID NO: 16. However, the present invention is not limited to this sequence. This sequence and the sequences of other non-virulent forms of P129 are described in International Application No. PCT/ IB2011/055003, filed Nov. 9, 2011, the contents of which (including any US National Stage filings based on this International Application) are incorporated herein by reference in their entirety. Preferably, the PRRS virus is modified to prevent downregulation of interferon-mediated function.

In other embodiments, the PRRS virus antigen component 55 employed in the compositions of the invention is the PRRS virus isolate designated ISU-55. The ISU-55 isolate was deposited in the American Type Culture Collection (ATCC), under the accession number VR2430. The nucleotide sequence of the ORF2 to ORF5 genes of the ISU-55 isolate is 60 represented by SEQ ID NO:17. The nucleotide sequence of the ORF6 and ORF7 genes of the ISU-55 isolate is represented by SEQ ID NO: 18.

Another suitable North American PRRS virus isolate which can be used in the compositions is ISU-12, which was deposited in the ATCC under the accession numbers VR2385 [3× plaque purified] and VR2386 [non-plaque purified]. Still other suitable North American PRRS virus isolates which can

be employed in the compositions of this invention are the following: ISU-51, ISU-3927, ISU-1894, ISU-22 and ISU-79, which were deposited in the ATCC under the accession numbers VR2498, VR12431, VR2475, VR2429 and VR2474, respectively. Genetically modified versions of any of these ISU isolates can be employed in the compositions of this invention. These ISU isolates and the ISU-55 isolate are described in detail in the following U.S. patents to Paul, et al: U.S. Pat. Nos. 5,695,766, 6,110,467, 6,251,397, 6,251,404, 6,380,376, 6,592,873, 6,773,908, 6,977,078, 7,223,854, 7,264,802, 7,264,957, and 7,517,976, all of which are incorporated herein by reference in their entirety.

In still other embodiments, the PRRS virus antigen component employed in the compositions according to the present invention is the North American type deposited in the American Type Culture Collection (ATCC), number VR-2332 or a genetically modified version thereof. For example, the PRRS virus can be a modified live virus based on the isolate identified as ATCC VR2332, which is employed 20 in INGELVAC® PRRS ATP and INGELVAC® PRRS MLV, from Boehringer Ingelheim Vetmedica, Inc.

In still other embodiments, the PRRS virus antigen component employed in the compositions of the present invention is a European PRRS virus isolate or Lelystad virus or a 25 genetically modified version thereof. An example of a suitable PRRS virus strain is identified as deposit No. I-1102, described above. Nucleotide and amino acid sequences corresponding to the I-1102 deposit are described in U.S. Pat. No. 5,620,691 to Wensvoort et al, which is hereby fully incorporated herein by reference. The preparation of an infectious clone of a European PRRS virus isolate or Lelystad virus is described in U.S. Pat. No. 6,268,199 which is hereby fully incorporated herein by reference. Other examples of suitable PRRS virus isolates include, but are not limited to, those described above. Also, live, genetically modified versions of the PRRS virus isolates can be employed in the compositions of the present invention. An infectious clone can be used to re-create such live genetically modified organisms.

It is understood by those of skill in the art that variants of the PRRS virus sequences can be employed in the compositions of the present invention. Such variants could vary by as much as 10-20% in sequence identity and still retain the antigenic characteristics that render it useful in immunogenic 45 compositions. Preferably, the PRRS virus variants have at least 80%, preferably at least 85%, more preferably at least 90%, even more preferably at least 95% sequence identify with the full-length genomic sequence of the wild-type PRRS virus isolate. The antigenic characteristics of an immunologi- 50 cal composition can be, for example, estimated by challenge experiments. Moreover, the antigenic characteristic of a modified PRRS virus antigen is still retained when the modified antigen confers at least 70%, preferably 80%, more preferably 90% of the protective immunity as compared to the 55 wild-type PRRS virus antigen.

In one embodiment, the PRRS virus antigen component is a genetically modified, live virus which is included in the compositions of the invention at a level of at least $2.1 \le TCID_{50} \le 5.2$, wherein $TCID_{50}$ is the tissue culture infectious dose 50% determined by antigen quantification (in vitro potency test)

The PCV2 antigen component of the PCV2/M.hyo/PRRS compositions of the invention can be in the form of a chimeric type-1-type 2 circovirus, the chimeric virus including an inactivated recombinant porcine circovirus type 1 expressing the porcine circovirus type 2 ORF2 protein. In another embodi-

16

ment, the PCV2 antigen component of the PCV2/M.hyo/PRRS compositions of the invention is in the form of a recombinant ORF2 protein.

Suitable PCV2 antigens for use in the PCV2/M.hyo/PRRS compositions can be derived from any of the PCV2 isolates described above, as well as other PCV2 isolates. Suitable PCV2 antigens to be employed in the compositions of the invention include, but are not limited to, the PCV2 sequences described above and variants thereof.

Vaccines of the present invention can be formulated following accepted convention to include acceptable carriers for animals, including humans (if applicable), such as standard buffers, stabilizers, diluents, preservatives, and/or solubilizers, and can also be formulated to facilitate sustained release. Diluents include water, saline, dextrose, ethanol, glycerol, and the like. Additives for isotonicity include sodium chloride, dextrose, mannitol, sorbitol, and lactose, among others. Stabilizers include albumin, among others. Other suitable vaccine vehicles and additives, including those that are particularly useful in formulating modified live vaccines, are known or will be apparent to those skilled in the art. See, e.g., Remington's Pharmaceutical Science, 18th ed., 1990, Mack Publishing, which is incorporated herein by reference.

Vaccines of the present invention can further comprise one or more additional immunomodulatory components such as, e.g., an adjuvant or cytokine, among others. Types of suitable adjuvants for use in the compositions of the present invention include the following: an oil-in-water adjuvant, a polymer and water adjuvant, a water-in-oil adjuvant, an aluminum hydroxide adjuvant, a vitamin E adjuvant and combinations thereof. Some specific examples of adjuvants include, but are not limited to, complete Freund's adjuvant, incomplete Freund's adjuvant, Corynebacterium parvum, Bacillus Calmette Guerin, aluminum hydroxide gel, glucan, dextran sulfate, iron oxide, sodium alginate, Bacto-Adjuvant, certain synthetic polymers such as poly amino acids and co-polymers of amino acids, Block copolymer (CytRx, Atlanta, Ga.), QS-21 (Cambridge Biotech Inc., Cambridge Mass.), SAF-M (Chiron, Emeryville Calif.), AMPHIGEN® adjuvant, saponin, Quil A or other saponin fraction, monophosphoryl lipid A, and Avridine lipid-amine adjuvant (N,N-dioctadecyl-N',N'bis(2-hydroxyethyl)-propanediamie), "REGRESSIN" (Vetrepharm, Athens, Ga.), paraffin oil, RIBI adjuvant system (Ribi Inc., Hamilton, Mont.), muramyl dipeptide and the like.

Non-limiting examples of oil-in-water emulsions useful in the vaccine of the invention include modified SEAM62 and SEAM ½ formulations. Modified SEAM62 is an oil-in-water emulsion containing 5% (v/v) squalene (Sigma), 1% (v/v) SPAN®; 85 detergent. (ICI Surfactants), 0.7% (v/v) TWEEN® 80 detergent (ICI Surfactants), 2.5% (v/v) ethanol, 200 μg/ml Quil A, 1.00 μg/ml cholesterol, and 0.5% (v/v) lecithin. Modified SEAM ½ is an oil-in-water emulsion comprising 5% (v/v) squalene, 1% (v/v) SPAN® 85 detergent, 0.7% (v/v) Tween 80 detergent, 2.5% (v/v) ethanol, 100 μg/ml Quil A, and 50 μg/ml cholesterol.

Another example of an, adjuvant useful in the compositions of the invention is SP-oil. As used in the specification and claims, the term "SP oil" designates an oil emulsion comprising a polyoxyethylene-polyoxypropylene block copolymer, squalane, polyoxyethylene sorbitan monooleate and a buffered salt solution. Polyoxyethylene-polyoxy-propylene block copolymers are surfactants that aid in suspending solid and liquid components. These surfactants are commercially available as polymers under the trade name Pluronic. The preferred surfactant is poloxamer 401 which is commercially available under the trade name Pluronic. L-121. In general, the SP oil emulsion is an immunostimu-

lating adjuvant mixture which will comprise about 1 to 3% vol/vol of block copolymer, about 2 to 6% vol/vol of squalane, more particularly about 3 to 6% of squalane, and about 0.1 to 0.5% vol/vol of polyoxyethylene sorbitan monooleate, with the remainder being a buffered salt solution. In one embodiment, the SP-oil emulsion is present in the final composition in v/v amounts of about 1% to 25%, preferably about 2% to 15%, more preferably about 5% to 12% v/v.

Yet another example of a suitable adjuvant for use in the 10 compositions of the invention is AMPHIGENTM adjuvant which consists of de-oiled lecithin dissolved in an oil, usually light liquid paraffin.

Other examples of adjuvants useful in the compositions of the invention are the following proprietary adjuvants: Microsol Diluvac Forte® duel emulsion adjuvant system, Emunade adjuvant, and Xsolve adjuvant. Both the Emunade and Xsolve adjuvants are emulsions of light mineral oil in water, but Emunade also contains alhydrogel, and d,l-α-tocopheryl acetate is part of the XSolve adjuvant. A still further example of a suitable adjuvant for use in the compositions of the invention is ImpranFLEXTM adjuvant (a water-in-oil adjuvant). A still further example of a suitable adjuvant is a Carbomer (Carbopol®) based adjuvant. Preferred Carbopol: adjuvants include Carbopol® 934 polymer and Carbopol®941 polymer.

In one embodiment, the adjuvant or adjuvant mixture is added in an amount of about $100 \, \mu g$ to about $10 \, mg$ per dose. In another embodiment, the adjuvant/adjuvant mixture is added in an amount of about $200 \, \mu g$ to about $5 \, mg$ per dose. 30 In yet another embodiment, the adjuvant/adjuvant mixture is added in an amount of about $300 \, \mu g$ to about $1 \, mg/dose$.

The adjuvant or adjuvant mixture is typically present in the vaccine composition of the invention in v/v amounts of about 1% to 25%, preferably about 2% to 15%, more preferably 35 about 5% to 12% v/v.

Other "immunomodulators" that can be included in the vaccine include, e.g., one or more interleukins, interferons, or other known cytokines. In one embodiment, the adjuvant may be a cyclodextrin derivative or a polyanionic polymer, such as 40 those described in U.S. Pat. Nos. 6,165,995 and 6,610,310, respectively.

A further aspect relates to a method for preparing an immunogenic composition according to the present invention. This method comprises i) culturing M.hyo in a suitable media over 45 periods ranging from 18-144 hours; ii) subsequently inactivating the M.hvo culture; iii) harvesting the inactivated culture fluid, wherein the inactivated culture fluid comprises an M.hyo whole cell preparation comprising both a soluble liquid fraction and insoluble cellular material; iv) separating the 50 soluble liquid fraction from the insoluble cellular material; v) substantially removing both IgG and antigen/immunoglobulin immunocomplexes from the separated soluble liquid fraction to form a soluble portion of the M.hyo whole cell preparation; and vi) subsequently combining the soluble portion of 55 the M.hyo whole cell preparation with a PCV2 antigen and a PRRS virus antigen. In some embodiments, step vi) includes combining a ready-to-use liquid composition including both the PCV2 antigen and the M.hyo soluble portion with a lyophilized PRRS virus antigen.

An example of a suitable media for culturing *M.hyo* is PPLO Broth (*Mycoplasma* Broth Base), which when supplemented with nutritive enrichments, is used for isolating and cultivating *Mycoplasma*.

In some embodiments, the culture of *M.hyo* is grown until 65 late log phase growth, after which the culture is inactivated. In some other embodiments, the culture is inactivated by raising

18

the pH (e.g., to about 7.8). This occurs by exposing the production culture to an inactivation agent, such as binary ethyleneimine (BEI). The BEI is generated in situ during incubation of L-bromoethylamine hydrobromide (BEA) in the production culture. Subsequently, the pH of the inactivated culture is neutralized, such as by adding an equivalent amount of an agent that neutralizes the inactivation agent within the solution. In some embodiments, the inactivation agent is BEI and the neutralization agent is sodium thiosulfate. In one embodiment, the pH of the inactivated culture is adjusted to about 7.4 by adding sodium thiosulfate.

In some embodiments, the soluble liquid fraction of the *M.hyo* whole cell preparation is separated from the insoluble cellular material using conventional methods. In one embodiment, this separation is by a filtration step. In another embodiment, this separation is by a centrifugation step. In yet another embodiment, the separation is by a precipitation step.

In one embodiment, the soluble liquid fraction of an inactivated, neutralized *M.hyo* whole cell preparation is treated with Protein A resin to substantially remove both the IgG and antigen/immunoglobulin immunocomplexes therein. In other embodiments, Protein G resin can be used to substantially remove both the IgG and antigen/immunoglobulin immunocomplexes contained in the soluble liquid fraction. Methods for removing both IgG and antigen/immunoglobulin immunocomplexes with either Protein A or Protein C resins are well known in the art.

According to a further aspect, the method for preparing a trivalent immunogenic composition according to the present invention comprises preparing the soluble *M.hyo* antigen as described above and mixing this with a PCV2 antigen, a PRRS virus antigen, a suitable adjuvant, and one or more pharmaceutically-acceptable carriers. This method optionally includes combining the PCV2 antigen and soluble *M.hyo* antigen to form a divalent composition and subsequently adding this divalent composition to a monovalent PRRS virus antigen composition to form the trivalent composition.

A further aspect of the present invention relates to a kit. A "kit" refers to a plurality of components which are grouped together. In one embodiment, a kit according to the present invention includes a first bottle (or other suitable receptable) comprising a composition including both a PCV2 antigen and the soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation, wherein the soluble portion of the *M.hyo* preparation is substantially free of both (i) IgG and (ii) antigen/immunoglobulin immunocomplexes; and a second bottle comprising PRRS virus antigen. In one embodiment, the kit further includes an instruction manual.

In some embodiments, the PCV2/*M.hyo* combination in the first bottle of the kit is provided as a ready-to-use liquid composition. In further embodiments, the PRRS virus antigen is in the form of a genetically modified, live virus which is provided in a lyophilized state. In such instances, the instruction manual will include the directions for re-hydrating the PRRS virus component in the second bottle with the liquid contents from the first bottle containing the PCV2/*M.hyo* combination. The instruction manual will also preferably include the directions to administer the combined contents from the first and second bottles to the pig.

In some embodiments, an immunogenic composition according to this invention is administered to pigs having maternally derived antibodies against at least one of *M.hyo*, PCV2 and PRRS virus. In other embodiments, an immunogenic composition of the present invention is administered to pigs having maternally derived antibodies against *M.hyo*, PCV2, and PRRS virus.

In some embodiments, a trivalent immunogenic composition according to the present invention is administered to a piglet aged 3 weeks or older. However, it is contemplated that a trivalent vaccine composition according to the invention may also be used to re-vaccinate gilts pre-breeding. As is known in the art, a gilt is a female pig that has never been pregnant. Vaccinated gilts will pass maternally derived antibodies onto their suckling newborns via colostrum.

It is further contemplated that a trivalent vaccine according to the invention can be used to annually re-vaccinate breeding herds. Preferably, a trivalent vaccine according to the present invention is administered to pigs (e.g., piglets or gilts) in one dose. In one embodiment, a multivalent vaccine according to the present invention does not require mixing of separate PCV2 and *M.hyo* monovalent vaccines prior to administration, i.e., the PCV2/*M.hyo* component is provided as a readyto-use formulation contained in one bottle, In another embodiment, a multivalent formulation requires mixing of a divalent PCV2/*M.hyo* vaccine contained in a first bottle with a monovalent PRRS vaccine contained in a second bottle. Optionally, additional antigens can be added to either of these bottles.

In some embodiments, the onset of immunity is from 2-3 weeks post-vaccination with a trivalent vaccine composition ²⁵ according to the present invention. In other embodiments, the duration of immunity is about 17-23 weeks post-vaccination with a trivalent vaccine composition according to the present invention.

The following examples set forth preferred materials and procedures in accordance with the present invention. However, it is to be understood that these examples are provided by way of illustration only, and nothing therein should be deemed a limitation upon the overall scope of the invention.

EXAMPLES

Example 1

Mycoplasma hyopneumoniae Production Methods for PCV2 Combinable M.hyo Antigen

M.hyo Fermentation and Inactivation

Media for seed scale and antigen production was prepared 45 as follows. Porcine heart derived Pleuropenumonia-like Organism (PPLO) Broth (BD Biosciences catalog No. 21498) was made per manufacturer's directions (i.e., 21 g/L) and yeast extract solution was made at 21 g/L in USP. Yeast extract solution was then added to the PPLO at 6.25% and the 50 mixture was sterilized by heating to 121° C. for ≥30 minutes. Cysteine hydrochloride was prepared at 90 g/L and filter sterilized. Dextrose solution was made by adding 450 g of dextrose per liter of USP water followed by heat sterilization. To prepare the final medium, porcine serum was added to the 55 base medium at 10% followed by cysteine at 0.01% and dextrose at 1.0%. The medium was inoculated with a 10% v:v of a log phase culture of M. hyopeumoniae (strain P-5722-3). The culture was held at 37° C. and pH and dO were maintained at 7.0 and 25%, respectively. At late log phase growth, 60 the culture was inactivated was inactivated by binary ethylenimine (BEI), an aziridine compound, produced from 2-bromoethylamine hydrobromide. Specifically, the inactivation occurred by raising the pH to 7.8 by adding 2-bromoethylaminehydrobromide (BEA) to a final concentration of 4 mM 65 and incubating for 24 hours. The BEI was neutralized by addition of sodium thiosulfate at a 1:1 molar ratio followed by

20

additional 24 hour incubation. The inactivated culture fluid was held at $2-8^{\circ}$ C. until further processing.

Example 2

Chimeric Porcine Circovirus (cPCV)1-2 Production Methods

The cPCV1-2 was constructed by cloning the immunogenic capsid gene of the pathogenic porcine circovirus type 2 (PCV2) into the genomic backbone of the nonpathogenic porcine circovirus type 1 (PCV1). The procedure for construction of the chimeric DNA clone is described, for example, in U.S. Pat. No. 7,279,166, which is incorporated herein by reference in its entirety. An infectious stock of the chimeric virus was acquired from Dr. X. J. Meng, Virginia Polytechnic Institute and State University, Blacksburg, Va., and was used to infect Porcine Kidney (PK)-15 cells grown in Minimum Essential Medium (MEM) supplemented with 0.05% lactalbumin hydrolysate (LAH), 30 μg/mL gentamicin sulfate, and 5% fetal bovine serum. The resulting cPCV1-2 infected PK-15 cells were further expanded by serial passing four more times using the same growth medium except with 2-3% fetal bovine serum. The fifth passage was frozen, thawed and filtered, and the resulting lysates were used to prepare a pre-master seed and subsequent master seed.

The medium which was used for producing virus seeds was the same as that used in producing virus stock. For the growth medium, MEM, OptiMEM, or equivalent is the basal medium which can be used for planting the PK-15 cell line for outgrowth. The growth medium can be supplemented with up to 10% bovine serum up to 0.5% lactalbumin hydrolysate, up to 0.5% bovine serum albumin, and up to $30\,\mu\text{g/mL}$ gentamicin. For the virus propagation medium, MEM, OptiMEM, or equivalent is used. The virus propagation medium can be supplemented with up to 0.5% lactalbumin hydrolysate, up to 2% bovine serum, up to 0.5% bovine serum albumin, and up to $30\,\mu\text{g/mL}$ gentamicin. Up to $5\,\text{g/L}$ glucose and up to $5\,\text{mmol/L}$ L-glutamine can be added to the growth medium and/or the virus propagation medium as required to sustain the cells.

The cPCV1-2 master seed virus are added to a cell suspension of PK-15 cells and adsorbed for up to 3 hours. Seed virus is diluted in growth basal medium to provide a multiplicity of infection (MOI) of 0.1-0.0001.

Cultures of PK-15 cells are initially inoculated with working seed virus at the time of cell planting, or when cells reach approximately 20% to 50% confluency. This initial passage may be referred as "One-Step Infection Method" for the production of antigen stock, or may be further used for serial passages. For serial passages, the cPCV1-2 infected PK-15 cells are further expanded up to passage 7 by serial splits at the ratio of 1:5-20 for virus propagation. Culture medium containing an infected cell suspension from the previous passage serves as seed material for the next passage. The cPCV1-2 infected cells are incubated for three (3) to 14 days for each passage at 36±2° C. when cells reach ≥90% confluency. The cPCV1-2 virus causes observable cytopathic changes during viral replication. At harvest, rounding of cells and considerable floating debris is observed. Cultures are also observed for visual evidence of bacterial or fungal contamination. The incubation time between harvests for the cPCV antigen is provided in Table 1 below:

60

TABLE 1

Minimum and Maximum	Times for Harvestin	g cPCV Antigen
Method	Minimum/ Maximum Time	Temperature Range
One-Step Infection Serial Passage (MSV + 3 to MSV + 7)	5 to 16 days 16 to 36 Days	36 ± 2° C. 36 ± 2° C.

The cPCV1-2 culture fluids are harvested into sterile vessels and are sampled for *mycoplasma* testing using known methods. Multiple harvests may be conducted from roller bottles, bioreactors and perfusion vessels.

Prior to inactivation of the harvested cPCV1-2 virus, one or more antigen lots may be concentrated (e.g., up to $60\times$) by ultrafiltration. The concentrates may be washed with balanced salt solution to reduce serum proteins.

The method of inactivation, attenuation, or detoxification of the cPCV1-2 virus will now be described. After cPCV antigen concentration, Beta-propiolactone (BPL) is added to the pooled cPCV1-2 viral material to obtain an approximate concentration of 0.2% v/v. The pooled viral fluids are then 25 agitated for a minimum of 15 minutes and then the inactivating bulk antigen fluids are transferred to a second sterile vessel. The transferred antigen fluids are maintained at 2-7° C., with constant agitation, for a minimum of 24 hours. After a minimum of 24 hours, a second addition of 0.2% v/v of BPL is added to the pooled suspension. The contents are subsequently agitated, transferred to a third vessel, and maintained at 2-7° C., with constant agitation, for an additional time of not less than 84 hours. In general, the total inactivation time is not less than 108 hours and not more than 120 hours. The inactivation method is summarized in Table 2 below.

TABLE 2

Inactivation Method							
Inactivant	Final Concentration	Temp. Range	Time- Hours (Min/Max)				
Beta- propiolactone (BPL)	0.4% v/v $(2 \times 0.2\% \text{ v/v}$ additions)	2-7° C. (w/Agitation)	108-120				

The inactivation is terminated by the addition of a final concentration of not more than 0.1 M solution of sodium thiosulfate. The pH of the inactivated antigen stock is adjusted to about 6.8 using NaOH or HCl. Following inactivation, a representative sample is taken from the pool and tested for completion of inactivation. The inactivated cPCV1-2 antigen product is standardized to a meet a target of 55 greater than 1.0 RP as measured via potency ELISA.

Example 3

Down Stream Processing of *M.hyo* Antigens and Analytical Testing of these Processed Antigens

Down Stream Processing of M. hyo Antigens:

Inactivated fermentation fluid (prepared as described above in Example 1) was treated for each indicated group as

follows. These processed *M.hyo* antigens were employed in Example 4 below.

T02: (Whole Bulk) Not processed.

T03: (10× UF concentrated) Concentrated via tangential flow filtration via a 100 KDa molecular weight cutoff membrane (hollow fiber), Final volume reduction was equal to 10×

T04 & T05: (10× UF concentrated & centrifuged) Concentrated *mycoplasma* cells (from T03) were collected and washed one time with PBS via centrifugation at ~20,000×g (Sorvall model RC5B).

T06 & 70: (10x centrifuged) inactivated fermentation fluid was centrifuged at ~20,000×g (Sorvall RC5B) and washed one time by resuspending the cells in PBS followed by an additional centrifugation. Final volume reduction was equal to 10x.

T08: (10x centrifuged & Heated) *Mycoplasma* cells were concentrated and washed per T06 and heated to 65° C. for 10 minutes.

T09; (Cell-free supernatant) Supernatant collected from the first centrifugation as described for T06 was filter sterilized through a 0.2 micron filter (Nalgene).

T10: (Cell-free supernatant-Protein-A treated) Sterile supernatant (prepared per T9) was mixed with Protein A resin (Protein A Sepharose, Pharmacia Inc) at a 10:1 volume ratio for 4 hours. Resin was removed sterile filtration and filtered fluid was stored at 2-8° C. This process uses postfermentation "downstream" protein A treatment to remove antibodies and immunocomplexes. Although the present invention does not preclude upstream protein A treatment, the present inventors have found that in the case of *M.hyo*, upstream protein A treatment of the growth media led to p46 results which were lower and inconsistent as compared to untreated media (data not shown).

Analytical Testing of *M.hyo* Downstream Processed Antigens The downstream processed *M.hyo* antigens preparations (prepared as described above) were tested for the recovery of *M.hyo* specific p46 antigen, and the presence of PCV2 antibody. In addition, these *M.hyo* antigen preparations were tested for the presence of Torque Teno Virus (TTV) including genotype I (g1TTV) and genotype 2 (g2TTV). The results are presented below in Table 3.

TABLE 3

	Characterization of M. hyo Downstream Processed Antigens								
		Bulk M. Hyo	qPCR	qPCR DNA					
)	Treatment	p46 RU/mL	S/P ratio	g1TTV	g2TTV				
	Whole bulk	809	0.248	1.00E+03	1.78E+03				
	10x UF	6666	0.819	1.00E+03	9.94E+03				
	concentrated								
	10x UF conc. +	614	0.019	0	0				
	Centrifuge	7.63	0.015	1.000.03	1.01E+02				
,	10x Centrifuged	763	-0.015	1.90E+02	1.91E+02				
	10x	690	-0.012	0	2.07E+02				
	Centrifuged +	0,0	0.012		2.072.02				
	Heated								
	Cell-free supe	719	0.242	4.20E+02	3.23E+03				
)	Cell-free supe	826	-0.014	0	2.06E+03				
	(Prot A)								

With reference to Table 3 above, recovery of the *M.hyo*-specific p46 antigen was demonstrated for each of the *M.hyo* downstream processed antigen preparations. In addition, the following treatments successfully removed PCV2 antibody: 10× UF concentrated & centrifuged, 10× centrifuged, 10×

24 TABLE 4-continued

centrifuged & heated and Cell-free supernatant (Protein-A treated). With respect to TTV, the following treatments successfully removed g1 TTV: 10x UF concentrated & centrifuged, 10x centrifuged & heated, and Cell-free supernatant (Protein-A treated). Only the treatment designated 10x UF 5 concentrated & centrifuged removed g2TTV. Torque teno virus isolates, including genotypes 1 and 2 are described in US210110150913, which is incorporated herein by reference in its entirety.

Since it is known in the art that Protein A binds IgG it is 10 understood by those of ordinary skill in the art that not only PCV2 antibody, but other swine antibodies, including PRRS antibody, HPS antibody, and SIV antibody will be effectively removed by the Protein-A treatment. This makes the Cell-free Protein-A treated M.hvo supernatant of this invention com- 15 patible not only with PCV2 antigen, but also with other porcine antigens due to the lack of immunological interference between the antigens. Additionally, the removal of the nonprotective cell debris and removal of the immunoglobulin and antigen/immunoglobulin complexes is reasonably expected 20 *Investigational Veterinary Product (IVP) Serial to make a safer vaccine.

Example 4

Preparation of M.hyo Experimental Vaccine Formulations

All experimental M.hyo vaccines were formulated with a final concentration of 5% Amphigen adjuvant. In addition, all vaccines were standardized with a p46 ELISA and preserved 30 with thimerosol. The experimental vaccine formulations were prepared with M.hyo antigens processed according to treatments T02-T10 above. In addition, Treatment T01 corresponded to a placebo (no M.hyo antigen, only 5% Amphigen adjuvant) whereas Treatment T11 is a positive control 35 corresponding to an expired bacterin-based M.hvo vaccine (RespiSure-ONE®, Pfizer Animal Health). These formulations are described in Table 4 below.

TABLE 4

M. hyo Experimental Vaccine Formulations							
Treatment IVP Serial*	Target p46 units/ds	MHyo antigen (mL)	Adjuvant (mL)	Formulation Vol. (mL)			

T01 123639 (Placebo) 5% Amphigen only, No Antigen

M. hyo Experimental Vaccine Formulations							
Treatment	t IVP Serial*	Target p46 units/ds	MHyo antigen (mL)	Adjuvant (mL)	Formulation Vol. (mL)		
T02	L100211A	452	279.36	250	1000		
T03	L100211B	452	6.78	50	200		
T04	L100211C	452	73.62	50	200		
T05	L100211D	816	132.90	50	200		
T06	L100211E	452	59.24	50	200		
T07	L100211F	816	106.95	50	200		
T08	L100211G	452	65.51	50	200		
T09	L100211H	452	62.87	50	200		
T10	L100211J	452	54.72	50	200		
T11	A827870	Ez	spired "Re	espiSure" va	ccine		

Example 5

Evaluation of the In Vivo Efficacy of M.hyo Vaccines with M.hyo Antigens from Different Downstream Processes

This study was conducted to evaluate the in vivo efficacy of Mycoplasma hyopneumoniae (M.hyo) vaccines with M.hyo antigens from different downstream processes (DSP). Pigs at 3 weeks of age were intramuscularly inoculated with a single dose of the different vaccine formulations described in Table 4 above. Sixteen animals were included in each of the treatment groups. Animals were challenged 21 days after vaccination with a virulent M.hyo field isolate. Animals were necropsied 28 days after challenge and the lungs were removed and scored for consolidation consistent with M.hyo infection. The primary criterion for protection against M.hyo challenge was lung consolidation scores. It is generally accepted that there is a relationship between the size of the lung lesions caused by enzootic pneumonia and an adverse 45 effect on growth rate. Table 5 below contains the lung lesion scores for the respective treatment groups. Statistical significance was determined by a Mixed Model Analysis of lung scores for each group.

TABLE 5

	Lung Lesion Results								
Treatment	Description	p46 RP Target/ Observed	% Lung Lesions Back Transformed LS Means	Range % Lung with Lesions	Contrast	p-value	Significant		
T01	Placebo (5%	N/A	11.7	1.2-44.3	N/A	N/A	N/A		
T02	Amphigen) Whole bulk	13/15.6	1.2	0.1-18.5	T01 vs 02	0	Yes		
T03	Whole bulk UF 10x	13/11.9	0.3	0.0-2.8	T01 vs 03	ō	Yes		
T04	UF 10x +	13/28.1	5.9	0.0-40.5	T01 vs 04	0.1589	No		
	Centrifuged								
T05	UF 10x +	24/48.2	3.7	0.0-42.3	T01 vs T05	0.0309	Yes		
	Centrifuged								
T06	10x Centrifuged	13/30.4	4.7	0.0-23.6	T01 vs 06	0.0388	Yes		
T07	10x Centrifuged	24/57.4	4.6	0.3-37.3	T01 vs T07	0.0323	Yes		

TABLE 5-continued

	Lung Lesion Results							
Treatmen	it Description	p46 RP Target/ Observed	% Lung Lesions Back Transformed LS Means	Range % Lung with Lesions	Contrast	p-value	Significant	
T08	10x Centrifuged + Heat	13/17.7	4.5	0.3-21.7	T01 vs T08	0.0137	Yes	
T09	Supernatant (no cells)	13/14.1	1.4	0.0-33.0	T01 vs T09	0.0004	Yes	
T10 T11	Supernatant + Prot A Expired RSO	13/12.1 13/12.5	3.1 2.2	0.0-25.8 0.1-32.1	T01 vs T10 T01 vs T11	0.0094 0.0009	Yes Yes	

With reference to Table 5 above, the results with M.hyo 15 level of chimeric PCV virus in the Protein-A treated superantigens from different downstream processes indicated that all experimental vaccines except T04 significantly differed from the placebo. These M.hyo lesion results are depicted graphically in FIG. 1. As shown in FIG. 1, T04 gave unacceptable results. All other treatments differed significantly 20 from the placebo (T01). The lung consolidation scores indicated that T02, T03 and T09-T11 gave the most efficacious protection against M.hyo challenge.

The p46 relative potency of the experimental vaccines was assessed by using a double antibody sandwich enzyme-linked 25 form for M.hyo-PCV2 combinations. immunosorbent assay (DAS ELISA). The p46 DAS ELISA results presented in Table 5 above indicate that all the experimental vaccines exceeded the target potency. In addition, the p46 relative potency was either maintained or increased during storage of the vaccines over a one-month period (data not 30 shown). A perceived increase in potency over time was observed in centrifuged antigens with the exception of those antigens that were subjected to heat. While not wishing to be bound by any one theory, it is likely that cell "carcasses" are breaking up over time and released more of the membrane 35 bound p46 antigen in the case of the centrifuged antigens.

Example 6

Evaluation of the Compatibility of the Experimental M.hyo Vaccines with PCV2 Antigen

This study was conducted to evaluate the compatibility of the M.hyo experimental vaccines with M. hyo antigens from different downstream processes with PCV2 antigen. The 45 M.hyo experimental vaccine formulations are described in Tables 4 and 5 above. The observed p46 relative potencies for these vaccines are described in Table 5 above. These M.hyo experimental vaccines were each combined with PCV2 antigen. In this example, the PCV2 antigen was a killed PCV 50 Type 1-Type 2 chimeric virus (Fostera PCV) prepared as described above in Example 2. The chimeric virus was included in the compositions at an initial level of about 1.6≤RP, wherein the RP is the Relative Potency unit determined by PCV2 ELISA antigen quantification (in vitro 55 potency test) compared to an efficacious reference vaccine.

The experimental *M.hyo*/PCV2 combination formulations were evaluated by PCV2 ELISA. The results are presented in FIG. 2. As shown in FIG. 2, only the M.hyo antigen preparations from the following downstream processes were com- 60 patible with the PCV2 antigen: Ultrafiltration & Centrifugation (T04 & T05), Centrifugation (T06 & T07), Centrifugation plus heat (T08) and Protein A-treated Supernatant (T10). Of these, the M.hyo Protein A-treated supernatant was the most compatible with PCV2 antigen when compared to the placebo control which included the chimeric virus and Amphigen adjuvant, but no M.hyo antigen. The

natant was 1.5 RP as compared to 1.69 RP for the placebo. It was therefore concluded that there is no or minimal immunological interference between the Protein-A treated M.hyo soluble antigen preparation and PCV2 antigen of the chimeric

The in vivo efficacy of the Protein-A treated M. hvo supernatant demonstrated in Example 5 above together with the results described in the present example indicated that the Protein-A treated supernatant was a potentially effective plat-

Example 7

Evaluation of PCV2 Efficacy of a 1-Bottle PCV2/M.hyo Combination Vaccine in Different Adjuvant Formulations

This study was designed to evaluate the PCV2 efficacy in a 1-bottle PCV2/M. hyo combination vaccine in different adjuvant formulations. In this example, the PCV2 antigen was a killed PCV Type 1-Type 2 chimeric virus (Fostera PCV). The chimeric virus was combined with an M.hyo soluble antigen preparation that was substantially free of IgG (i.e., Protein A-treated supernatant).

40 Processing of Fluids:

Inactivated M.hyo fermentation fluid (described above in Example 1) was treated for each indicated group as follows. T02-T04: Whole fermentation fluid containing live M. hyopneumoniae cells (described above) was centrifuged at ~20, 000xg (Sorvall RC5B) and the supernatant collected and sterilized through a 0.2 μM filter. rProtein A Sepharose (part number 17-5199-03, GE Healthcare) was packed into a 1 L chromatography column. After removal of the storage buffer and treatment with 2 column volumes of 1 M acetic acid, the resin was equilibrated with 5 column volumes of 50 mM NaPO4/1M NaCl buffer, pH 7.04. Approximately 2 liters of the clarified/filtered M. hyopneumoniae antigen containing fluids were passed through the Protein A resin at a flow rate of 100 cm/hr. The flow through was collected and sterilized via $0.2\ \mu M$ filter.

T05: This is a positive control corresponding to a Fostera PCV-like formulation (no M. hyo antigen). The level, of the chimeric virus in this Fostera PCV-like formulation was approximately at Minimum Immunizing Dose (MID) formrmulation levels. The chimeric virus was included in the PCV2/M. hyo experimental vaccines at similar formulation levels.

All experimental PCV2/M.hyo vaccines were formulated with different adjuvant formulations. The experimental vaccine formulations were prepared with M.hyo antigens processed according to treatments T02-T04 above. In addition, Treatment T01 corresponded to a placebo (sterile saline).

All vaccines were standardized with a p46 ELISA and preserved with thimerosol.

These experimental formulations are described in Table 6 below, wherein the symbol * indicates the *M.hyo* antigen from global *M.hyo* seed, Protein A treated supernatant and the symbol ** indicates Investigational Veterinary Product (IVP) serial.

TABLE 6

:	PCV2/M. hyo Experimental Vaccine Formulations Used for PCV2 Efficacy Study							
Treatment	t IVP Serial**	PCV1-2 Ag	M Hyo*	Adjuvant	Other			
T01	87-244-DK (Placebo)		1	NΑ	Sterile Saline			
T02	L0411RK08	1.6 RP	7.5 RP	10% SP Oil	NA			
T03	L0411RK09			5% Amphigen				
T04	L0611RK03			5% Amphigen + 5% SLCD				
T05	L0611RK04		NA	20% SLCD				

Pigs at 3 weeks of age were intramuscularly inoculated with a single dose of the different vaccine formulations described in Table 6 above. Sixteen animals were included in 25 each of the treatment groups. Animals were challenged 21 days after vaccination with a virulent PCV2 field isolate.

FIG. 3 is a graph showing the PCV2 viremia results (PCV2 Quantitative PCR) observed with the different adjuvant platforms. It is noted that PCV2 viremia was used as the primary efficacy variable. The PCV2 viremia results are presented as DNA copies/ml. As shown in FIG. 3, all treatments had significantly less viremia compared to the placebo on days 28, 35 and 42 (challenge was day 21). The 10% SP-oil adjuvant had significantly less viremia compared to 5% Amphigen at Days 28 and 35. The 5% Amphigen plus 5% SLCD adjuvant had significantly less viremia compared to 5% Amphigen at Days 28 and 35. The 20% SLCD adjuvant platform had significantly less viremia compared to 5% Amphigen at Days 28, 35 and 42.

PCV2 Serology, PCV2 fecal shed, PCV2 nasal shed, Cell Mediated Immune (CMI) responses, lymphoid depletion, and Immunohistochemistry (IHC) were also monitored as secondary efficacy variables. These results will now be described 45 below.

FIG. 4 is a graph showing the PCV2 ELISA results on days 1, 20 and 42 of the study (challenge was day 21). The status of each sample was expressed as a sample to positive ratio (S/P). As shown in FIG. 4, 20% SLCD) was the only treatment 50 which was significantly different from the placebo (T01) at both day 20 and day 42. Also, 5% Amphigen was the only treatment not significantly different from the placebo at day 20.

FIG. 5 is a graph showing the PCV2 fecal shed obtained 55 with the T02-T04 treatments vs. the placebo (T01). These results are expressed as PCV2 DNA copies/ml. The results in FIG. 5 indicate that all treatments had significantly less fecal shed when compared to the placebo at day 42. In addition, 5% Amphigen & 5% SLCD (T04) had significantly less fecal 60 shed as compared to 5% Amphigen (T03) at day 42. No other treatment differences were noted.

FIG. 6 is a graph showing the PCV2 nasal shed obtained with the T02-T04 treatments vs. the placebo (T01). These results are expressed as PCV2 DNA copies/ml. The results in 65 FIG. 6 indicate that all treatments had significantly less nasal shed when compared to the placebo at day 42. In addition,

20% SLCD (T05) had significantly less nasal shed compared to 5% Amphigen (T03) at day 42. No other treatment differences were noted.

FIGS. 7 (A & B) are of two graphs showing the results of an interferon-gamma (IFN-γ) test that measures PCV2-specific cellular mediated immune (CMI) responses. The CMI results are shown post-vaccination/pre-challenge (FIG. 7A), and post-vaccination/post-challenge (FIG. 7B). In these graphs, stimulation of 5×10⁶ cells was considered significant (...).

All PCV2/M.hyo experiment vaccines gave a detectable IFN-γ response post-vaccination. The 10% SP-oil (T02) drove the strongest IFN-γ response post-vaccination. The 20% SLCD (T05) induced an earlier response, but the lowest response at day 20. There was a large post-challenge response, especially seen in the placebo group. Additionally, the post-challenge response was lower in the vaccinated pig treatment groups as compared to the placebo group.

Table 7 below shows the lymphoid depletion obtained with 20 the experimental treatments contrasted to the placebo.

TABLE 7

	PCV2 Hi	PCV2 Histopathology (Lymphoid Depletion)							
	L;	ymphoid De	pletion	Contrasted to Placebo					
Treatment	Positive	Negative	% Ever Pos.	P-value	Significant				
Placebo	9	7	56%	NA	NA				
10% SP-oil	1	15	6%	0.0059	Yes				
5%	1	15	6%	0.0059	Yes				
Amphigen 5% Amph + 5% SLCD	0	16	0%	0.0008	Yes				
20% SLCD	1	15	6%	0.0059	Yes				

The results presented in Table 7 above show that all vaccines afforded strong protection against lymphoid depletion. Also, no statistically significant vaccine treatment contrasts were observed. Table 8 below shows the immunohistochemistry obtained with the experimental treatments contrasted to the placebo.

TABLE 8

	PCV2 His	topathology	(Immunohisto	hemistry)	
	Im	munohistoc	hemistry	Contraste	d to Placebo
Treatment	Positive	Negative	% Ever Pos.	P-value	Significant
Placebo	12	4	75%	NA	NA
10% SP-oil	0	16	0%	0.0001	Yes
5%	1	15	6%	0.0002	Yes
Amphigen 5% Amph + 5%	0	16	0%	0.0001	Yes
SLCD 20% SLCD	0	16	6%	0.0001	Yes

The results presented in Table 8 above show that all vaccines afforded strong protection against PCV2 colonization as evidenced by immunohistochemistry. Also, no statistically significant vaccine treatment contrasts were observed.

In conclusion, the results presented in this example demonstrate that the *M.hyo* soluble antigen preparation does not interfere with PCV2 efficacy. The results also show that all the PCV/*M.hyo* experimental vaccine formulations provide efficacy against PCV2 challenge. Additionally, the results indicate that there are some statistical and numerical differences

obtained with the different adjuvant formulations, with 10% SP-oil yielding the strongest efficacy.

Example 8

Evaluation of *M.hyo* Efficacy of a 1-Bottle PCV2/*M.hyo* Combination Vaccine in with Different Adjuvant Formulations

This study was designed to evaluate the *M.hyo* efficacy of a 1-bottle PCV2/*M. hyo* combination vaccine with different adjuvant formulations. The *M.hyo* antigen was combined with Porcine Circovirus (Type 1-Type 2 Chimera, or PCV1-2, killed virus) in one bottle.

Processing of Fluids:

Inactivated *M.hyo* fermentation fluid (described above in Example 1) was treated for each indicated group as follows.

T02-T04: These treatments were the same as those described $_{20}$ for treatment groups T02-T04 in Example 7 above.

T05: This was formulated with inactivated *M.hyo* cells (*M.hyo* bacterin) as described in Example 1 above under the heading "Fermentation and Inactivation".

All experimental PCV2/M.hyo vaccines were formulated with different adjuvant formulations. The experimental vaccine formulations were prepared with M.hyo antigens processed according to treatments T02-T04. In addition, Treatment T01 corresponded to a placebo (sterile saline). Treatment T05 is a positive control corresponding to an expired RespiSure® vaccine, which is an M.hyo bacterin-based vaccine (Pfizer Animal Health).

These experimental formulations are described in Table 9 below, wherein the symbol * indicates the *M.hyo* antigen 35 from global *M.hyo* seed. Protein A treated supernatant and the symbol ** indicates investigational Veterinary Product (IVP) serial.

TABLE 9

PCV2/	PCV2/M. hyo Experimental Vaccine Formulations Used for M. hyo Efficacy Study in Different Adjuvant Formulations							
Treatment	IVP Serial **	PCV1-2 Ag	M Hyo* Ag	Adjuvant	Other			
T01	87-244-DK (Placebo)		1	NA	Sterile Saline			
T02	L0411RK08	1.6 RP	7.5 RP	10% SP Oil	NA			
T03	L0411RK09			5% Amphigen				
T04	L0611RK03			5% Amphigen + 5% SLCD				
T05	A827870		Expired	"RespiSure" vacci	ne			

Pigs at 3 weeks of age were intramuscularly inoculated with a single dose of the different vaccine formulations described in Table 9 above. Fourteen animals were included in both the placebo and 10% SP-oil groups, thirteen animals were included in the positive control group, and sixteen animals were included in both the 5% Amphigen and 5% Amphigen+5% SLCD groups.

Animals were challenged 21 days after vaccination with a virulent *M.hyo* field isolate. Animals were necropsied 28 days after challenge and the lungs were removed and scored for consolidation consistent with *M.hyo* infection. Table 10 below contains the lung lesion scores for the respective treatment groups. Statistical significance was determined by a Mixed Model Analysis of lung scores for each group.

30 TABLE 10

	M. hyo Lui	ng Lesions	
Treatment	# Animal	LS Mean Lung Lesion	Range % Lung Lesion
Placebo (T01)	14	13.1%	0.1-50.5
10% SP-oil (T02)	14	4.3%	0.0-50.8
5% Amphigen (T03)	16	4.7%	0.0-38.5
5% Amph + 5%	16	12.0%	0.1-55.8
SLCD (T04)			
Expired RSO (T05)	13	2.28%	0.0-34.5

As indicated in Table 10 above, the placebo group had a mean lung lesion score of 13.1%, as compared to the 10% SP-oil and 5% Amphigen treatment groups which had mean lung scores of 4.3% and 4.7%, respectively. Both the 10% SP-oil and 5% Amphigen formulations reduced and/or prevented lung lesions. Thus, the experimental PCV/*M.hyo* vaccines formulated with 10% SP-oil or 5% Amphigen were considered efficacious. The PCV2 antigen did not appear to interfere with the *M.hyo* efficacy of these formulations.

In contrast, the 5% Amphigen+5% SLCD group had a mean lung lesion score of 12.0%, which was an unacceptable result in that it was not different as compared to the placebo. Consequently, the experiment PCV/*M.hyo* vaccine formulated with 5% Amphigen+5% SLCD was not considered as efficacious.

It is noted that due to the reduced animal number and high variability in lung lesion scoring, no statistical treatment effect could be conclusively demonstrated in this study. For this reason, it was decided that another study would be designed to test the *M.hyo* efficacy of the PCV/*M. hyo* experimental formulations in 10% SP-oil. This repeat study is presented in Example 9 below.

Example 9

Evaluation of *M.hyo* Efficacy of a 1-Bottle PCV2/*M.hyo* Combination Vaccine in 10% SP-oil

This study is a proof of concept designed to evaluate the *M.hyo* fraction efficacy of four experimental PCV2/*M.hyo* vaccines (Serials L0711RK11, L0711RK12, L0711RK13 and L0711RK14 in Table 11 below) prepared by different 45 *M.hyo* manufacturing processes which utilize Protein A for IgG removal compared to control vaccines prepared with the standard *M.hyo* manufacturing process. Each of these four experimental PCV2/*M.hyo* vaccines included 10% SP-oil as the adjuvant.

50 Processing of Fluids:

T02: Inactivated *M. hyopneumoniae* antigen as described under "Fermentation and Inactivation" in Example 1 above.

T03 and T04: Formulated with inactivated *M. hyopneumo-niae* cells as described under "Fermentation and Inactivation" in Example 1 above.

T05: Protein A treatment of medium used to grow *M. hyop-neumoniae*. PPLO (porcine heart derived) was made per manufacturer's directions (i.e., 21 g/L) and yeast extract solution was made at 21 g/L in USP. Yeast extract solution was added to the PPLO at 6.25% and the mixture was sterilized by heating to 121° C. for ≥30 minutes. Cysteine hydrochloride was prepared at 90 g/L and filter sterilized. Dextrose solution was made by adding 450 g of dextrose per liter of USP water followed by heat sterilization. To prepare the final medium, porcine serum was added to the base medium at 10% followed by cysteine at 0.01% and

fied filtered *M. hyopneumoniae* antigen containing fluids were passed through the resin at a flow rate of 120 cm/hr. The flow through was collected and sterilized via 0.2 μ M filter.

32

dextrose at 1.0%. Antibodies in the complete PPLO media were removed by treatment with protein A. Briefly, one liter of rProtein A Sepharose (part number 17-5199-03 GE Healthcare) was packed into a glass column (10×11.5 cm). After removal of storage buffer, the column was treated with 2 column volumes of 1M acetic acid. The resin was equilibrated with 5 column volumes of 50 mM NaPO4, 1M NaCl buffer (pH 7.0). Fifteen liters of complete PPLO medium was loaded onto the resin at a linear flow rate of 140 cm/hour. The column flow through was collected and filter sterilized through a 0.2 micron filter (Sartorius). The treated medium was used propagate *M. hyopneumoniae* cells as described under "Fermentation 1.0 and inactivation-" above. Whole inactivated culture (including cells) was formulated into the final vaccine.

T08: Inactivated *M. hyopneumoniae* cells were prepared as described under "Fermentation and Inactivation" above. The inactivated fermentation fluid was centrifuged at ~20000×g (Sorvall RC5B) for 30 min. and the supernatant was sterilized via 0.2 uM filtration. One hundred fifteen mls of rProtein A Sepharose (part number 17-5199-03 GE Healthcare) was packed into a chromatography column (5×6 cm). After removal of the storage buffer and treatment with 2 column volumes of 1 M acetic acid, the resin was equilibrated with 5 column volumes of 50 mM NaPO4/1M NaCl buffer, pH 7.01. Approximately 1.2 liters of the clarified/filtered *M. hyopneumoniae* antigen containing fluids were passed through the resin at a flow rate of 120 cm/hr. The flow through was collected and sterilized via 0.2 uM filter.

06: Inactivated *M. hyopneumoniae* cells were prepared as described under "Fermentation and Inactivation" in Example 1 above. The inactivated fermentation fluid was centrifuged at ~20,000×g (Sorvall RC5B) for 30 min. and the supernatant was sterilized via 0.2 uM filtration. One 20 hundred fifteen mls of rProtein A resin (part number 12-1279-04, MAbSelect, GE Healthcare) was packed into a chromatography column (5×6 cm). After removal of the storage buffer and treatment with 2 column volumes of 1M acetic acid, the resin was equilibrated with 5 column volumes of 50 mM NaPO4/1M NaCl buffer, pH 7.01. Approximately 1.2 liters of the clarified/filtered *M. hyopneumoniae* antigen containing fluids were passed through the resin at a flow rate of 120 cm/hr. The flow through was collected and sterilized via 0.2 μM filter.

The experimental vaccine formulations were prepared with *M.hyo* antigens processed according to treatments T02-T08 above. T02. T03 and T04 corresponded to positive controls. In addition, Treatment T01 corresponded to a placebo (sterile saline).

T07: Inactivated *M. hyopneumoniae* cells were prepared as described under "Fermentation and Inactivation" in

These experimental formulations are described in Table 11 below. The *M.hyo* antigen corresponds to the *M.hyo* antigen from global *M.hyo* seed, Protein A treated supernatant. The information in the "Protein A Treatment" column indicates whether the *M.hyo* supernatant was treated with Protein A either before or after fermentation.

TABLE 11

PC	CV2/M. hyo Ex	perimental	Vaccine 1	Formulation	s Used for M. h	vo Efficacy St	udy in SP-Oil A	Adjuvant
Treatment	Serial No.	PCV1-2 Ag	M. hyo Ag	Protein A Treatment	Supernatant Clarification Method	Protein A Brand	Adjuvant	Other
T01	L0311AS11				NA			Sterile Saline
T02	A828718	NA	13	E	xpired RespiSu	ıre One	Amphigen	NA
T03	L0711RK09	1.5 RP	7.5 RP	M. hyo	without Protein and with PC		10% SP Oil	
T04	L0711RK10	NA		M. hyo	without Protein	A treatment		
				•	and without Po	CV-2		
T05	L0711RK11	1.5 RP		Before	NA	Sepharose		
T06	L0711RK12			After	Centrifuge	MAbSelect		
T07	L0711RK13			After	Filter	MAbSelect		
T08	L0711RK14			After	Centrifuge	Sepharose		

Example 1 above. The inactivated fermentation fluid was clarified by via tangential flow filtration. Briefly, a polyether sulfone filter (GE HealthCare, part number 56-4102-71) with nominal pore size of 0.2 µM was sanitized with 0.5N sodium hydroxide solution followed by extensive 55 rinsing with sterile USP water. Inactivated mycoplasma culture fluid was introduced to the apparatus at a recirculation rate targeted to 14.6 L/minute and a transmembrane pressure of 2-3.4 PSI. Clarification was performed at room temperature. Filter permeate was collected and stored at 60 2-8C until further processing. One hundred fifteen mls of rProtein A resin (part number 12-1279-04, MAbSelect. GE Healthcare) was packed into a chromatography column $(5\times6 \text{ cm})$. After removal of the storage buffer and treatment with 2 column volumes of 1 M acetic acid, the resin was equilibrated with 5 column volumes of 50 mM NaPO4/1M NaCl buffer, pH 7.01. Approximately 2.3 liters of the clari-

Pigs at 3 weeks of age were intramuscularly inoculated with a single dose of the different vaccine formulations described in Table 11 above. There were 18 pigs included in each treatment group. Animals were challenged 21 days after vaccination with a virulent *M.hyo* field isolate. Animals were necropsied 28 days after challenge and the lungs were removed and scored for consolidation consistent with *M.hyo* infection. FIGS. **8** (A & B) show the lung lesion scores for the respective treatment groups. Statistical significance was determined by a Mixed Model Analysis of lung scores for each group.

The lung lesion results depicted in FIGS. **8**A and **8**B indicate that of all the treatments, only two (T07 and T08) had 100% of pigs in the <5% lung lesion category. It is noted that strong statistical difference were observed in this study.

The results in the present example demonstrate significant *M.hyo* efficacy in a 1-bottle PCV2/*M.hyo* experimental for-

15

33

mulation employing the Protein A-treated *M.hyo* supernatant and utilizing SP-oil as the adjuvant. Additionally, Example 7 above demonstrated PCV2 efficacy in a 1-bottle PCV2/*M.hyo* formulation employing the Protein A-treated *M.hyo* supernatant and utilizing SP-oil as the adjuvant. Taken together, both *M.hyo* and PCV2 efficacy have been demonstrated in the 1-bottle PCV2/*M.hyo* combinations employing Protein A-treated *M. hyo* supernatant.

Example 10

In vivo Safety of Experimental PCV2/M.hyo Experimental Vaccines

This study was conducted to evaluate in vivo safety of experimental PCV2-M.hyo vaccines formulated at maximum antigen dose in various adjuvant formulations in the host animal when given at the youngest age (3 weeks of age). Different adjuvant platforms were evaluated in order to determine which of these platforms provided an acceptable safety profile based on temperature, injection site reactions and clinical observations. A 20% SLCD/10% SP-oil formulation was used as a positive ("unsafe") control due to historic issues with injection site reactions observed by this investigative group and others.

Processing of Fluids:

All vaccines were prepared with inactivated M. hyopneu- 30 moniae antigen as described under "Fermentation and Inactivation" in Example 1. M.hyo whole bulk antigen was used since it was known to contain soluble and insoluble M.hyo antigens, in addition to the immunoglobulins and immunocomplexes that would be removed upon protein A treatment. It is reasonable to conclude that removal of insoluble cell debris and immunoglobulins and immunocomplexes will only further enhance the safety of the vaccine formulations. The intention of this study was to stringently test the safety of 40 the various adjuvant formulations containing PCV2 antigen and M.hyo antigen. The PCV2 and M.hyo antigens were formulated at maximum release levels to further assess safety. These experimental formulations are described in Table 12 below. IVP indicates investigational Veterinary Product 45 (IVP).

TABLE 12

PCV2/M Inva Experimental Vaccine Formulations Used for Safety Study

IVP Serial	PCV1-2 Ag	M Hyo* Ag	Adjuvant	Other	Minimum Vaccine Vol. (mL)
87-244-DK		1	NA	Sterile	NA
(Placebo)				Saline	
L0411RK15	7.8 RP	13 RP	10% SP Oil	NA	200
L0411RK16			5% Amphigen		200
L0611RK05			5% Amphigen +		200
			5% SLCD		
L0611RK06			20% SLCD +		200
			10% SP Oil		

^{*}M hyo antigen = from global M hyo seed (whole bulk antigen)

34

The safety parameters employed in this study were rectal temperature profile and injection site reaction. The results of this study indicated that all candidate adjuvant platforms provided an acceptable safety profile in terms of rectal temperature profile and clinical observations (results not shown). Only the 20% SLCD+10% SP-oil (i.e., positive control) was significantly different than the placebo vaccine and had a number of severe injection site reactions (results not shown).

Example 11

Preparation of Protein A Treated *M.hyo* Antigen for Pivotal Studies

FIG. **9** is a flowchart which shows one embodiment of a manufacturing process used to prepare PCV2 compatible Protein-A treated *M.hyo* antigen. Inactivated whole cultures of *M. hyo* were clarified of cells via tangential flow filtration. Briefly, a polyether sulfone filter (GE Healthcare, part number 56-4102-49) with nominal pore size of 0.45 μM was sanitized with 0.5N sodium hydroxide solution followed by extensive rinsing with sterile USP water. Inactivated *mycoplasma* culture fluid was introduced to the apparatus at a recirculation rate targeted to 1.0 L/minute and a transmembrane pressure of ~5 PSI. Clarification was performed at room temperature. Filter permeate was collected and stored at 2-8° C. until further processing.

Following clarification, antigen containing fluids were treated with protein A resin to reduce antibody levels. Briefly, MAbSelect protein A resin (GE Healthcare) was packed into a glass column to a height of 12 cm. The resin was equilibrated with 5 column volumes of 50 mM sodium phosphate, 250 mM NaCl buffer (pH 7.0). Antigen containing fluid, equivalent to 10 column volumes, was loaded onto the resin at a linear flow rate of 100 cm/hour. The column flow through was collected and filter sterilized through a 0.2 micron filter. Regeneration of the column was achieved by flowing 3 column volumes of 25 mM acetate solution at pH 3.7 followed by 4 column volumes of 1M acetic acid solution. Anti-PCV2 antibodies and *M. hyopneumoniae* antigen levels were measured in the final antigen fluid via PCV2 specific antibody ELISA and p46 antigen quantification. ELISA, respectively.

Example 12

Evaluation of Virucidal Activity Against PRRS Virus

The studies presented in this example were designed to evaluate the various adjuvant platforms for virucidal activity against PRRS virus. Initial experiments focused on adjuvant alone (i.e., the formulations did not contain PCV or *M.hyo* antigens). The adjuvant evaluation for PRRS virucidal activity is presented in FIG. 10. Preliminary virucidal assessment indicated that 10% SP-oil, 0.2% Carbopol and 2.5% Amphigen are non-virucidal to PRRS virus. In contrast, the 20% SLCD adjuvant appeared to be virucidal to PRRS virus.

Further studies were performed to evaluate whether the PCV/*M.hyo* formulations adjuvanted with the different adjuvant platforms were non-virucidal to PRRS virus. These results are presented in Table 13 below, wherein the symbol * indicates those vaccine serials which were virucidal to PRRS virus.

TABLE 13

	Results of PRRS Virucidal Assay with Different Formulations								
	Potency								
Vaccin	e Serial Used in Studies of Examples 7, 8, 10	_	p46 RP	PCV2 NVSL		RS cidal			
Study	Description	Serial #	(ru/ds)	RP	A	В			
Examples 7, 8, 10 Examples 7, 8	Sterile Saline (0.9% Sodium chloride) cPCV (RP 1.6) + M Hyo Prot A treated (RP 7.5) in	87-244-DK (Placebo) L0411RK08	7.1	1.29	-0.10	-0.13			
Examples 7, 8	10% SP Oil cPCV (RP 1.6) + M Hyo Prot A treated (RP 7.5) in 5% Amphigen	L0411RK09	7.3	1.33	-0.10	+0.14			
Examples 7, 8	cPCV (RP 1.6) + M Hyo Prot A treated (RP 7.5) in 5% Amph + 5% SLCD	L0611RK03	6.9	1.15	-0.36	-0.33			
Example 7		L0611RK04		1.50	-1.86*	-0.50			
Example 8	Expired RespiSure One serial	A827870	12.6						
Example 10	cPCV (RP 7.8) + M Hyo Whole Bulk (RP 13.3) in 10% SP Oil	L0411RK15	14	1.03	-0.32	-0.03			
Example 10	cPCV (RP 7.8) + M Hyo Whole Bulk (RP 13.3) in 5% Amphigen	L0411RK16	15.5	1.12	-0.36	-0.53			
Example 10	cPCV (RP 7.8) + M Hyo Whole Bulk (RP 13.3) in 5% Amph + 5% SLCD	L0611RK05	17.5	1.50	-0.54	-0.33			
Example 10	cPCV (RP 7.8) + M Hyo Whole Bulk (RP 13.3) in 20% SLCD + 10% SP Oil	L0611RK06	15.9	1.13	-1.93*	-0.99*			

^{*}Indicates Virucidal (>0.7 log loss)

The results presented in Table 13 above indicate that 10% SP-oil is non-virucidal to PRRS virus. Further PCV/M.hyo vaccine serials were prepared using 10% SP-oil as the adjuvant (Table 14). The results shown in Table 14 below further demonstrate that 10% SP-oil is non-virucidal to PRRS virus. The test sample values in Table 14 were each higher (+sign) than the virucidal assay control, which had a geometric mean titer (GMT) of about 5.9 ± 0.5 log/ml.

The results presented in this example demonstrate that 10% SP-oil is non-virucidal to PRRS virus. The results presented in this example further demonstrate that the PCV/ *M.hyo* formulation adjuvanted with 10% SP-oil was among those vaccine serials which were considered non-virucidal to PRRS virus (Table 13 and Table 14). In conclusion, the PCV/ *M.hyo* formulation adjuvanted with 10% SP-oil was considered an effective platform on which to base a trivalent combination including PCV, *M. hyo*, and PRRS virus.

TABLE 14

Results of Virucidal Assay with Differ	rent PCV/M. hyo	Formulations Adjuvanted with 10% SP-o Vaccine Serial Used			
		Pote			
Description	Serial #	p46 RP (ru/ds) Reference L1211RK15	PCV2 NVSL Reference L1211RK15	PRRS Virucidal log10 TCID50/mL	
Sterile Diluent (sterile water) cPCV + M Hyo Prot A treated in 10%	1949122 L0912RK12	na 1.62	na 2.60	+0.58	
SP Oil cPCV + <i>M Hyo</i> Prot A treated in 10% SP Oil	L0912RK10	0.88	1.23	+0.58	
cPCV + M Hyo Prot A treated in 10% SP Oil	L0912RK11	1.24	2.62	+0.58	
cPCV + M Hyo Prot A treated in 10% SP Oil	L0912RK08	1.08	1.03	+0.91	
cPCV + M Hyo Prot A treated in 10% SP Oil	L0912RK09	1.65	2.06	+0.50	

A-Virucidal assay control GMT ~5.53 log/mL

B—Virucidal assay control GMT \sim 6.42 log/mL

37 Example 13

Vaccine

Preparation of a PCV/M.hyo/PRRS Combination

A PCV/*M.hyo* formulation adjuvanted with an adjuvant platform which is non-virucidal to PRRS virus (see Table 13 and Table 14 above), is provided as a ready-to-use in one-bottle liquid composition. This 1-bottle PCV/*M.hyo* formulation employs Protein A-treated *M.hyo* supernatant. Both *M.hyo* and PCV2 efficacy have been demonstrated in such PCV2/*M.hyo* formulations employing *M.hyo* Protein A-treated supernatant (see Examples 7-9). In the present 15 example, this divalent PCV2/*M.hyo* formulation is combined with a monovalent PRRS virus antigen.

In one embodiment, a PCV/*M.hyo* combination in 1.0% SP-oil and corresponding to one of the vaccine serials 20 L0711RK11, L711RK12, L0711RK13 and L0711RK14 in Table 11 above is provided as a ready-to-use in one bottle

38

Example 14

Evaluation of PCV2 Efficacy of a PCV2/M.hyo/PRRS Combination Vaccine Followed by a PCV2 Challenge

This study was designed to evaluate the efficacy of the PCV1-2 chimera, killed virus fraction of an experimental PCV2/M.hyo/PRRS combination vaccine administered intramuscularly once to pigs at 3 weeks of age and challenged with a virulent PCV2 isolate three weeks post vaccination. These trivalent vaccines included Porcine Circovirus Type 1-Type 2 Chimera, killed virus, Respiratory and Reproductive Syndrome Vaccine, Respiratory Form, Modified Live Virus, and Mycoplasma Hyopneumoniae Bacterial Extract.

This trivalent combination was prepared by re-hydrating a lyophilized genetically modified live PRRS virus (PRRS-MLV) with a one-bottle liquid formulation including a combination of porcine circovirus Type1-Type 2 Chimera, killed virus and *M.hyo* bacterial extract (PCV2/*M.hyo*), which is adjuvanted using 10% SP-oil (see Example 13 above). The experimental formulations administered throughout the course of the present study are described in Table 15 below.

TABLE 15

PCV:	PCV2/M. hyo/PRRS Experimental Vaccine Formulations Used for PCV2 Efficacy Study								
		CP or		Antigen		Study Days			
Group	N	IVP	Serial No.	Input ¹	Vaccination	Challenge	Necropsy		
T01	24	M hyo PRRSV MLV	L1012RK10 L1011CM14	≥153 RU/mL 4.5 log10 TCID50	Day 0 2 mL IM	Day 21 1 mL IM 2 mL IN	Day 42 ± 3 days		
T02	24	PCV2 M hyo PRRSV MLV	L0912RK08 L1011CM14	0.688% 102 RU/mL 4.5 log10 TCID50	Left Neck	40895			
Т03	24	PCV2 M hyo PRRSV MLV	L0912RK09 L1011CM14	1.375% 153 RU/mL 4.5 log10 TCID50					

IVP = Investigational Veterinary Product

liquid composition. The results presented in Example 12 above demonstrated that 10% SP-oil is non-virucidal to PRRS virus. Example 12 also demonstrated that PCV2/ M.hyo formulations adjuvanted with 10% SP-oil were among those vaccine serials which were considered non-virucidal to PRRS virus. In the present example, such a 1-bottle PCV2/ M.hyo liquid composition is used to re-hydrate a lyophilized genetically modified live PRRS virus composition contained in a second bottle, such that all antigens are contained in a single bottle prior to being administered to a pig of a suitable age (e.g., at 3 weeks of age or older).

In one embodiment, the PRRS virus has the genomic sequence corresponding to SEQ ID NO: 16 or a variant thereof. In another embodiment, the PRRS virus employed in the trivalent composition is the PRRS virus isolate designated ISU-55, which was deposited in the ATCC under the accession number VR 2430. Suitable amounts of the respective antigens are described herein. Desirably, all antigens are administered in a single dose to the pig.

Pigs at 3 weeks of age were intramuscularly inoculated with a single dose of the different vaccine formulations described in Table 15 above. Twenty-four animals were included in each of the treatment groups. Animals were challenged 21 days after vaccination with a virulent PCV2a isolate.

The PCV2 viremia results (PCV2 Quantitative PCR) observed in this study are presented in FIG. 11. It is noted that PCV2 viremia was used as the primary efficacy variable. The PCV2 viremia results are presented as DNA copies/ml. As shown in FIG. 11, all treatments had significantly less viremia (P<0.001) compared to the placebo on days 28, 35 and 42 (challenge was day 21).

PCV2 Serology, PCV2 fecal shed, lymphoid depletion, and Immunohistochemistry (IHC) were also monitored as secondary efficacy variables in this study. These results are described below.

The PCV2 serology results are presented in FIG. 12, which shows the PCV2 EISA results on days –1, 7, 13, 20, 28, 35 and 42 of the study (challenge was day 21). The status of each sample was expressed as a sample to positive ratio (S/P). These results show that compared to the placebo group, both

CP = Control Product

IM = Intramuscularly IN = Intranasal

^{1% =} PCV2 antigen, RU/mL = M hyo antigen, log10 TCID50 = PRRSV antigen

55

40

treatment groups had significantly higher PCV2 antibody titers post-challenge (P<0.0345)

The PCV2 fecal shed obtained with the T02 and T03 treatments vs. the placebo (T01) is presented in FIG. 13. These results are expressed as PCV2 DNA copies/ml. The results in FIG. 13 indicate that both the T02 and T03 treatments had significantly less fecal shed (P<0.0001) when compared to the placebo on days 35 and 42.

Table 16 below shows the significant protection against 10 lymphoid depletion obtained with the experimental treatment (T02) contrasted to the placebo.

TABLE 16

CV2 Histopathology (Lymphoid Depletion)									
Lymphoid Depletion Contrasted to Place									
Treatment	eatment Positive Negative % Ever Pos. P-val								
Placebo	13	8	61.9%	NA	NA				
T02	3	17	15%	0.047	Yes				
T03	7 13 35% 0.0780 No								

The results presented in Table 17 below shows the significant protection against Histocytic Replacement obtained with the experimental treatment (T02) contrasted to the placebo.

TABLE 17

PCV2 Histopathology (Histiocytic replacement)					
	Histiocytic Replacement			Contrasted to Placebo	
Treatment	Positive	Negative	% Ever Pos.	P-value	Significant
Placebo T02 T03	11 2 6	10 18 14	52.4% 10% 30%	NA 0.0105 0.1566	NA Yes No

Table 18 below shows the immunohistochemistry obtained with the experimental treatments contrasted to the placebo. Both vaccines (T02 and T03) showed significant protection 45 (P<0.0059) against colonization of PCV2 antigen in lymphoid tissues.

TABLE 18

PCV2 Histopathology (Immunohistochemistry)					
	Immunohistochemistry			Contrasted to Placebo	
Treatment	Positive	Negative	% Ever Pos.	P-value	Significant
Placebo	14	7	66.7%	NA	NA
T02	3	17	15%	0.0030	Yes
T03	4	16	20%	0.0059	Yes

In conclusion, the results presented in this example demonstrate that the experimental vaccines used in this study provided efficacy against a PCV2 challenge. Both potency levels of the vaccines provided significant protection against the primary variable as well as PCV2 colonization. However, the T02 group also provided significant protection against PCV2 lesions (lymphoid depletion and histiocytic replacement).

Example 15

Evaluation of *M. hyo* Efficacy of a PCV2/*M.hyo*/PRRS Combination Vaccine Followed by *M.hyo* Challenge

This study was designed to evaluate the efficacy of the *M.hyo* fraction of an experimental PCV2/*M.hyo*/PRRS combination vaccine, administered intramuscularly in susceptible pigs at 3 weeks of age and challenged with a virulent *Mycoplasma hyopneumoniae* isolate three weeks post vaccination. These trivalent vaccines included Porcine Circovirus Type 1-Type 2 Chimera, killed virus, Respiratory and Reproductive Syndrome Vaccine, Respiratory Form, Modified Live Virus, and *Mycoplasma* Hyopneumoniae Bacterial Extract. Processing of Fluids:

Inactivated, clarified *M.hyo* fermentation fluid (described above in Example 11) was used for each treatment group as follows

T01: A negative control treatment consisting of PCV1-2 vaccine without *M. hyopneumoniae* antigen which was used as diluent in a lyophilized PRRSV modified live vaccine,

T02: Inactivated *M. hyopneumoniae* antigen was combined with Porcine. Circovirus (Type 1-Type 2 Chimera, or PCV1-2, killed virus) in one bottle. The PCV1-2/*M.hyo* combination was used as diluent in a lyophilized PRRSV modified live vaccine.

T03: Inactivated *M. hyopneumoniae* antigen as described above in Example 11 with an additional step to concentrate the antigen 20x by molecular filtration was combined with Porcine Circovirus (Type 1-Type 2 Chimera, or PCV1-2, killed virus) in one bottle. The PCV1-2/*M. hyo* combination was used as diluent in a lyophilized PRRSV modified live vaccine.

These experimental formulations are described in Table 19 below, in Table 19, CP is control product and IVP is Investigational Veterinary Product. The *M.hyo* antigen corresponds to the *M.hyo* antigen from global *M.hyo* seed, Protein A treated supernatant.

TABLE 19

PCV2/M. hyo/PRRS Experimental Vaccine Formulations used for M. hyo Efficacy Study					
Group	N	CP or IVP	Serial No.	Potency	
NTX	5	Sentinel			
T01	25	PCV2	L0412RK13	4.3 Relative Potency Units	
		PRRSV MLV	L1011CM14	4.5 +/- 0.5 LOG10	
				FAID ₅₀ /mL	
T02	25	PCV2	L1211RK12	4.5 Relative Potency Units	
		M hyo		2.7 Relative Potency Units	
		PRRSV MLV	L1011CM14	4.5 +/- 0.5 LOG10	
				FAID ₅₀ /mL	
T03	25	PCV2	L0712RK33	34 Relative Potency Units	
		M hyo-filter concentrated		2.7 Relative Potency Units	
		PRRSV MLV	L1011CM14	4.5 +/- 0.5 LOG10	
				FAID ₅₀ /mL	

Pigs at 3 weeks of age were intramuscularly inoculated with a single dose of the different vaccine formulations described in Table 19 above. Animals were challenged 20 days after vaccination with a virulent *M.hyo* field isolate. Twenty five animals completed the study in group T01 and T03, and 24 completed the study in group T02. Animals were necropsied 28 days after challenge and the lungs were removed and scored for consolidation consistent with *M.hyo* infection. Table 20 below contains the lung lesion scores for

the respective treatment groups, Statistical significance was determined by a Mixed Model Analysis of lung scores for each group.

TABLE 20

M. hyo Lui	ng Lesions		
Treatment	# A nimal	LS Mean Lung Lesion	Range % Lung Lesion
T01: PCV1-2, PRRSV MVL T02: PCV1-2/M. hyo, PRRSV MVL T03: PCV/Mhyo-filter concentrated, PRRSV MVI.	25 24 25	7.65% 4.38% 2.23%	0.00 to 44.75 0.10 to 20.95 0.00 to 17.95

Compared to the negative control group (T001), treatment group T03 demonstrated a significant reduction ($P \le 0.05$) in percent lung with lesion compared to T01. The percent lung lesions for T02 were not significantly different from either T01 or T03.

The results in the present example demonstrate that an experimental trivalent vaccine formulation (T03 treatment) used in this study provided significant efficacy against *M.hyo* challenge.

Example 16

Evaluation of PRRSV Efficacy of a PCV/*M.hyo*/PRRS Combination Vaccine

This study was designed to evaluate the efficacy of the PRRSV fraction of an experimental PCV2/M.hyo/PRRS combination vaccine.

Study Summary:

On Day 0, approximately 102 clinically healthy, three 35 week old pigs, sero-negative to PRRSV, SIV and M. hyopneumoniae and free of PCV viremia by PCR, are selected and allotted (blocked by litter) to one of the four treatment groups (24 per group) or a sentinel (NTX) group (6). Pigs are administered a single 2 mL intramuscular (IM) dose of an experimental Porcine Circovirus Type 1-Type 2 Chimera, Killed Virus Vaccine—Mycoplasma Hyopneumoniae Bacterial Extract (T01) or an experimental Porcine Circovirus Type 1-2 Chimera—Respiratory and Reproductive Syndrome Vaccine, Respiratory Form, Modified Live and Killed Virus-Myco- 45 plasma Hyopneumoniae Bacterial Extract (T02, T03 and T04). The NTX group animals are housed in a separate pen from treatment groups during the vaccination phase of the study. Four weeks after vaccination the NTX pigs are euthanized and necropsied, prior to re-housing the treatment 50 groups, to confirm absence of PRRSV lung lesions. All treated pigs are challenged with a virulent PRRSV challenge strain (NADC20). All remaining pigs are euthanized and necropsied ten (10) days after challenge. At necropsy, the percentage of consolidation for each lobe of the lung (left

42

cranial, left middle, left caudal, right cranial, right middle, right caudal, and accessory) is scored and recorded as percent of the lobe observed with lesions. The PRRSV negative status of T01 pigs is tested (IDEXX ELISA) prior to challenge. Clinical observations are recorded once daily for the duration of study and body weights are taken prior to challenge and at necropsy.

The experimental formulations are described below and in Table 21. The *M.hyo* antigen control lot is prepared as described in Example 11 above. The PCV2 antigen is a killed cPCVI-2 antigen prepared as described in Example 2 above. Prior to inactivation of the chimeric virus, the PCV2 antigen lot was concentrated 20× and the concentrates were washed with a balanced salt solution. The PCV/*M.hyo* one-bottle f formulation (adjuvanted in 10% SP oil) is used to re-hydrate lyophilized modified live PRRSV.

T01: Experimental preparation of high passage Porcine Circovirus Type 1-Type 2 Chimera, killed virus (1.65% of 20x concentrated antigen lot) and *Mycoplasma* Hyopneumoniae Bacterial Extract (Dose-9.0 RP; 153 RU/mL). T01 preparation corresponds to serial number L0912RK12 (PCV/*M. hyo*) and is a negative control (no PRRSV antigen).

T02: Experimental preparation of high passage Porcine Circovirus Vaccine Type 1-Type 2 Chimera, killed virus (1.65% of 20× concentrated antigen lot) and *Mycoplasma* Hyopneumoniae Bacterial Extract (Dose—9.0 RP; 153 RU/ml.) and Experimental preparation of high passage of Porcine Reproductive & Respiratory Syndrome Vaccine Respiratory Form, Modified Live Virus (MID (≤2.5 logs). T02 preparation corresponds to serial number L0912RK12 (PCV/*M.hyo*)+(PRRS MLV at MID≤2.5 logs).

T03: Experimental preparation of high passage Porcine Circovirus Vaccine Type 1-Type 2 Chimera, killed virus (1.65% of 20× concentrated antigen lot) and *Mycoplasma* Hyopneumoniae Bacterial Extract (Dose—9.0 RP; 153 RU/mL.) and Experimental preparation of high passage of Porcine Reproductive & Respiratory Syndrome Vaccine Respiratory Form, Modified Live Virus (MID (≤3.0 logs). T03 preparation corresponds to serial number L0912RK12 (PCV/*M.hyo*)+(PRRS MLV at MID≤3.0 logs).

T04: Experimental preparation of high passage Porcine Circovirus Vaccine Type 1-Type 2 Chimera, killed virus (1.65% of 20× concentrated antigen lot) and *Mycoplasma* Hyopneumoniae Bacterial Extract (Dose—9.0 RP; 153 RU/mL) and Experimental preparation of high passage of Porcine Reproductive & Respiratory Syndrome Vaccine Respiratory Form, Modified Live Virus (MID (≤3.5 logs). 104 preparation corresponds to serial number L0912RK12 (PCV/*M. hyo*)+(PRRS MLV at MID≤35 logs).

These experimental formulations are described in Table 21 below. The *M.hyo* antigen corresponds to the *M.hyo* antigen from global *M.hyo* seed, Protein A treated supernatant. Serial numbers for the PRRSV preparations are to be determined (TBD).

TABLE 21

Study Design						
				Study Days		
Group	N	CP or IVP ¹	Lot No.	Vaccination	Challenge	Necropsy
NTX	6	Sentinel		NA		At re-housing Lung Scores
T01	24	PCV2/ M. hyo	L0912RK12	Day 0 2 mL IM	Day 28 4 mL (1 mL	Day 38 Lung Scores

$\Gamma ABLE$	21-continued

	Study Design									
Study Days										
Group	N	CP or IVP ¹	Lot No.	Vaccination	Challenge	Necropsy				
T02	24	PCV2/ M. hyo + PRRSV	L0912RK12 + TBD	Right Neck	per nostril + 2 mL IM					
Т03	24	PCV2/ M. hyo + PRRSV	L0912RK12 + TBD		injection) Left Neck					
T04	24	PCV2/ M. hyo + PRRSV	L0912RK12 + TBD							

¹Investigational Veterinary Product (IVP) = Porcine Circovirus Type 1-2 Chimera (PCV2). Killed Virus vaccine-Investigational veterinary Product (VP) = Profine Circovitus 1ype 1-2 Chimera (PC V2). Killed Vitus Vacchimera (M hyo) Bacterial Extract adjuvanted with 10% SP Oil (diluent)-Porcine Reproductive & Respiratory Syndrome Vaccine, Respiratory Form, Modified Live Virus (PRRSV) Control Product (CP) = Porcine Circovirus Type 1-2 Chimera (PCV2). Killed Virus vaccine-Mycoplasma Hyopneumoniae (M hyo) Porcine Reproductive & Respiratory Syndrome Vaccine fraction: Adjuvanted with 10% SP Oil IM = Intramuscular

NA = Not Applicable

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 18

<210> SEQ ID NO 1

<211> LENGTH: 1260

<212> TYPE: DNA

<213 > ORGANISM: Mycoplasma hyopneumoniae

<400> SEQUENCE: 1

atgaaaaaaa tgcttagaaa aaaattcttg tattcatcag ctatttatgc aacttcgctt 60 120 gcatcaatta ttgcatttgt tgcagcaggt tgtggacaga cagaatcagg ttcgacttct gattctaaac cacaagccga gacgctaaaa cataaagtaa gtaatgattc tattcgaata 180 qcactaaccq atccqqataa tcctcqatqa attaqtqctc aaaaaqatat tatttcttat 240 qttqatqaaa caqaqqcaqc aacttcaaca attacaaaaa accaqqatqc acaqaataac 300 tgactcactc agcaagctaa tttaagccca gcaccaaaag gatttattat tgcccctgaa 360 aatggaagtg gagttggaac tgctgttaat acaattgctg ataaaggaat tccgattgtt 420 gcctatgatc gactaattac tggatctgat aaatatgatt ggtatgtttc ttttgataat 480 gaaaaagttg gcgaattaca aggtctttca cttgcagcgg gtctattagg aaaagaagat 540 ggtgcttttg attcaattga tcaaatgaat gaatatctaa aatcacatat gccccaagag 600 acaatttctt tttatacaat cgcgggttcc caagatgata ataactccca atattttat 660 aatggtgcaa tgaaagtact taaagaatta atgaaaaatt cgggaaataa gataattgat 720 ttatctcctg aaggcgaaaa tgctgtttat gtcccaggat gaaattatgg aactgccggt 780 caaagaatcc aatcttttct aacaattaac aaagatccag caggtggtaa taaaatcaaa 840 gctgttggtt caaaaccagc ttctattttc aaaggatttc ttgccccaaa tgatggaatg 900 gccgarcaag caatcaccaa attaaaactt gaaggatttg atacccaaaa aatctttgta 960 actggtcaag attataatga taaagccaaa acttttatca aagacggcga tcaaaatatg 1020 acaatttata aacctgataa agttttagga aaagttgctg ttgaagttct tcgggtttta 1080 attgcaaaga aaaataaagc atccagatca gaagtcgaaa acgaactaaa agcaaaacta 1140 ccaaatattt catttaaata tgataatcaa acatataaag tgcaaggtaa aaatattaat 1200 1260 acaattttaq taaqtccaqt aattqttaca aaaqctaatq ttqataatcc tqatqcctaa

44

	-continued															
<pre><210> SEQ ID NO 2 <211> LENGTH: 419 <212> TYPE: PRT</pre>																
	<213	3 > OF	RGANI	ISM:	Мус	oplas	sma l	nyopr	neumo	oniae	9					
	< 400)> SI	EQUE	ICE :	2											
	Met 1	Lys	Lys	Met	Leu 5	Arg	ГÀв	ГÀв	Phe	Leu 10	Tyr	Ser	Ser	Ala	Ile 15	Tyr
	Ala	Thr	Ser	Leu 20	Ala	Ser	Ile	Ile	Ala 25	Phe	Val	Ala	Ala	Gly 30	Cys	Gly
	Gln	Thr	Glu 35	Ser	Gly	Ser	Thr	Ser 40	Asp	Ser	Lys	Pro	Gln 45	Ala	Glu	Thr
	Leu	Lys	His	ГÀа	Val	Ser	Asn 55	Asp	Ser	Ile	Arg	Ile 60	Ala	Leu	Thr	Asp
	Pro 65	Asp	Asn	Pro	Arg	Trp 70	Ile	Ser	Ala	Gln	Lys 75	Asp	Ile	Ile	Ser	Tyr 80
	Val	Asp	Glu	Thr	Glu 85	Ala	Ala	Thr	Ser	Thr 90	Ile	Thr	ГÀа	Asn	Gln 95	Asp
	Ala	Gln	Asn	Asn 100	Trp	Leu	Thr	Gln	Gln 105	Ala	Asn	Leu	Ser	Pro 110	Ala	Pro
	Lys	Gly	Phe 115	Ile	Ile	Ala	Pro	Glu 120	Asn	Gly	Ser	Gly	Val 125	Gly	Thr	Ala
	Val	Asn 130	Thr	Ile	Ala	Asp	Lys 135	Gly	Ile	Pro	Ile	Val 140	Ala	Tyr	Asp	Arg
	Leu 145	Ile	Thr	Gly	Ser	Asp 150	ГÀв	Tyr	Asp	Trp	Tyr 155	Val	Ser	Phe	Asp	Asn 160
	Glu	Lys	Val	Gly	Glu 165	Leu	Gln	Gly	Leu	Ser 170	Leu	Ala	Ala	Gly	Leu 175	Leu
	Gly	ГЛЗ	Glu	Asp 180	Gly	Ala	Phe	Asp	Ser 185	Ile	Asp	Gln	Met	Asn 190	Glu	Tyr
	Leu	Lys	Ser 195	His	Met	Pro	Gln	Glu 200	Thr	Ile	Ser	Phe	Tyr 205	Thr	Ile	Ala
	Gly	Ser 210	Gln	Asp	Asp	Asn	Asn 215	Ser	Gln	Tyr	Phe	Tyr 220	Asn	Gly	Ala	Met
	Lys 225	Val	Leu	ГÀа	Glu	Leu 230	Met	Lys	Asn	Ser	Gly 235	Asn	ГÀа	Ile	Ile	Asp 240
	Leu	Ser	Pro	Glu	Gly 245	Glu	Asn	Ala	Val	Tyr 250	Val	Pro	Gly	Trp	Asn 255	Tyr
	Gly	Thr	Ala	Gly 260	Gln	Arg	Ile	Gln	Ser 265	Phe	Leu	Thr	Ile	Asn 270	Lys	Asp
	Pro	Ala	Gly 275	Gly	Asn	Lys	Ile	Lys 280	Ala	Val	Gly	Ser	Lys 285	Pro	Ala	Ser
	Ile	Phe 290	Lys	Gly	Phe	Leu	Ala 295	Pro	Asn	Asp	Gly	Met 300	Ala	Glu	Gln	Ala
	Ile 305	Thr	Lys	Leu	ГЛа	Leu 310	Glu	Gly	Phe	Asp	Thr 315	Gln	ГÀа	Ile	Phe	Val 320
	Thr	Gly	Gln	Asp	Tyr 325	Asn	Asp	Lys	Ala	330 Tàa	Thr	Phe	Ile	Lys	Asp 335	Gly
	Asp	Gln	Asn	Met 340	Thr	Ile	Tyr	Lys	Pro 345	Asp	Lys	Val	Leu	Gly 350	Lys	Val
	Ala	Val	Glu 355	Val	Leu	Arg	Val	Leu 360	Ile	Ala	Lys	Lys	Asn 365	Lys	Ala	Ser

Arg Ser Glu Val Glu Asn Glu Leu Lys Ala Lys Leu Pro Asn Ile Ser \$370\$

47

-continued

Phe Lys Tyr Asp Asn Gln Thr Tyr Lys Val Gln Gly Lys Asn Ile Asn 385 $$ 390 $$ 395 $$ 400

Thr Ile Leu Val Ser Pro Val Ile Val Thr Lys Ala Asn Val Asp Asn 405 410 415

atgagtaaaa aatcaaaaac atttaaaatt ggtttgactg ccggaattgt tggtcttgga

gtttttggtc taactgtcgg acttagcagc ttggcaaaat acagatcaga aagtccacga

Pro Asp Ala

<210> SEQ ID NO 3

<211> LENGTH: 3324 <212> TYPE: DNA

<213 > ORGANISM: Mycoplasma hyopneumoniae

<400> SEQUENCE: 3

aagattgcaa atgattttgc cgcaaaagtt tcaacattag cttttagtcc ttatgctttt 180 qaqactqatt ctqattataa aataqtcaaa aqqtqactaq ttqattctaa taacaatatt 240 agaaataaag aaaaagttat tgatteettt teetttttta etaaaaaegg tgateagtta 300 gaaaaaatta attttcaaga tootgaatat accaaggoga agataacttt tgagattott 360 gaaattatcc ctgatgatgt caatcaaaat tttaaggtaa aatttcaggc attacaaaaa 420 cttcataatq qtqatattqc caaatctqat atttatqaqc aaacaqttqc ttttqccaaa 480 caqtcaaatc ttttaqttqc cqaatttaat ttttcqctta aaaaaattac cqaaaaatta 540 aatcaacaaa ttgaaaaattt atcaacaaaa attacaaatt ttgctgatga aaaaacaagc 600 agccaaaaag atccctcaac tctaagagct attgacttcc aatacgattt aaatacagcg 660 cgaaatcctg aggatttaga tataaagctt gctaattatt ttccagtact taaaaattta 720 ataaacagac taaataatgc tcctgagaat aaattaccta ataatttggg taatattttt 780 gaatttagct ttgcaaaaga tagttcaact aatcaatatg taagtatcca gaaccaaatt 840 cettegetgt ttttaaaage agatettagt caaagtgeee gtgaaatttt agetageeea 900 gatgaagttc agccagttat taacatttta agattaatga aaaaagataa ttcttcttat 960 tttctaaatt ttgaggattt tgttaataat ttaacactga aaaatatgca aaaagaagat 1020 ttaaatgcaa agggtcaaaa tctttctgcc tatgaatttc tagcagatat taaatctgga 1080 tttttccctg gagacaagag atccagtcat accaaggcag aaattagtaa tcttttaaat 1140 1200 aaaaaagaaa atatttatga ctttggtaaa tacaatggaa aattcaacga ccgtcttaac togocaaatt tagaatatag ootagatgoa goaagogoaa gtottgataa aaaagataaa 1260 tcaatagttt taattcccta ccgccttgaa attaaagata aattttttgc cgatgattta tatccagata caaaagataa tattctcgta aaagaaggga ttcttaaatt aactggattt aaaaaaggct caaaaattga tctccctaat atcaatcagc aaatttttaa aaccgaatat 1440 ttaccatttt ttgaaaaagg taaagaagaa caagcaaaat tagactatgg taatatctta 1500 aatccatata atactcaact tgccaaagtt gaagttgaag ctctttttaa agggaataaa 1560 aaccaagaaa tctatcaagc acttgatgga aattatgcct atgaattcgg ggcctttaaa tccgtgctta attcctgaac aggaaaaatt cagcatcctg aaaaagctga tatccaaaga 1680 tttacaagac atttagaaca agttaaaatt ggttctaatt cagttttaaa tcaaccacaa 1740 acaacaaaag aacaagtaat ttcaagtctt aaaagtaata acttttttaa aaatggacat 1800 caagttgcaa gttatttcca ggatttactc accaaggaca aattaacaat tttagagact 1860 ctttatgatc tagcaaaaaa atggggacta gaaactaaca gagcacaatt cccaaaaggg 1920

gttttccaat	atacaaaaga	tatttt	gca ga	agcagata	aattaaaa	tt tt	tggaattg	1980
aagaaaaagg	atccttacaa	ı tcagata	aaaa ga	aattcacc	aactttcc	tt ta	atatttta	2040
gcccgtaacg	atgtaataaa	atctgat	gga tt	ttacggag	ttttatta	tt gc	cccaaagt	2100
gtaaaaactg	aattagaagg	, caaaaat	gag gc	gcaaattt	ttgaagcg	ct ta	aaaagtat	2160
tctttaattg	agaactcggo	: ttttaaa	act act	tattttag	ataaaaat	tt ac	ttgaaggg	2220
actgatttta	aaaccttcgg	ı tgatttt	tta aa	agcatttt	tccttaaa	gc ag	gcccaattt	2280
aataattttg	ctccttgago	aaaatt <i>a</i>	agac ga	taatcttc	agtattca	tt tg	gaagctatc	2340
aaaaaagggg	aaactacaaa	ı agaaggt	aaa ag	agaagaag	tagataaa	aa ag	ıttaaggaa	2400
ttggataata	aaataaaagg	j tatatto	geet eag	gcccccag	cagcaaaa	.cc ag	jaagcagca	2460
aaaccagtag	cggctaaacc	: agaaaca	aca aa	accagtag	cagctaaa	.cc tg	gaagcagct	2520
aaacctgaag	cagcaaaacc	agtageg	ggct aa	accagaag	cagcaaaa	.cc ag	ıtagegget	2580
aaaccagaag	cagcaaaacc	agtageg	ggct aa	accagaag	cagcaaaa	cc ag	ıtagcggct	2640
aaaccagaag	cagcaaaacc	agttgct	act aa	tactggct	tttcactt	ac aa	ataaacca	2700
aaagaagact	atttcccaat	ggctttt	agt ta	taaattag	aatatact	ga cg	jaaaataaa	2760
ttaagcctaa	aaacaccgga	ı aattaat	gta tt	tttagaac	tagttcat	ca aa	gcgagtat	2820
gaagaacaag	aaataataaa	ggaact <i>a</i>	agat aa	aactgttt	taaatctt	ca at	atcaattc	2880
caggaagtca	aggtaactag	j tgaccaa	atat ca	gaaactta	gccaccca	at ga	ıtgaccgaa	2940
ggatcttcaa	atcaaggtaa	aaaaago	gaa gg	aactccta	accaaggt	aa aa	ıaagcagaa	3000
ggcgcgccta	accaaggtaa	aaaagco	gaa gg	aactccta	accaaggg	aa aa	ıaagcagag	3060
ggagcaccta	gtcaacaaag	, cccaact	acc ga	attaacta	attacctt	.cc tg	jacttaggt	3120
aaaaaaattg	acgaaatcat	taaaaaa	acaa ggi	taaaaatt	gaaaaaca	ga gg	ıttgaacta	3180
atcgaggata	atatcgctgg	g agatgct	aaa tt	gctatact	ttatccta	ag gg	gatgattca	3240
aaatccggtg	atcctaaaaa	ı atcaagt	cta aa	agttaaaa	taacagta	aa ac	aaagtaat	3300
aataatcagg	aaccagaato	taaa						3324
<210> SEQ <211> LENG								
<212> TYPE <213> ORGA	: PRT NISM: Mycop	olasma hv	opneum	oniae				
<400> SEQU		-						
Met Ser Ly		wa Thr E	Dhe Iwa	Tle Gly	Leu Thr	Δla G	ilv Tle	
1	5	.yo	пс дуб	10	Bea III		.5	
Val Gly Le	u Gly Val E 20	he Gly I	Leu Thr 25	Val Gly		Ser L 30	ueu Ala	
Lys Tyr Ar 35	g Ser Glu S		Arg Lys 10	Ile Ala	Asn Asp 45	Phe A	ala Ala	
Lys Val Se 50	r Thr Leu A	Ala Phe S 55	Ser Pro	Tyr Ala	Phe Glu 60	Thr A	Asp Ser	
Asp Tyr Ly 65		ys Arg T 70	rp Leu	Val Asp 75	Ser Asn	Asn A	Asn Ile 80	
Arg Asn Ly	s Glu Lys \ 85	al Ile A	Asp Ser	Phe Ser 90	Phe Phe		ys Asn 95	
Gly Asp Gl	n Leu Glu I 100	ys Ile A	Asn Phe 105	Gln Asp	Pro Glu	Tyr T	Thr Lys	

Ala Lys Ile Thr Phe Glu Ile Leu Glu Ile Ile Pro Asp Asp Val Asn

_															
		115					120					125			
Gln	Asn 130	Phe	ГÀЗ	Val	ГÀЗ	Phe 135	Gln	Ala	Leu	Gln	Lys 140	Leu	His	Asn	Gly
Asp 145	Ile	Ala	Lys	Ser	Asp 150	Ile	Tyr	Glu	Gln	Thr 155	Val	Ala	Phe	Ala	Lys 160
Gln	Ser	Asn	Leu	Leu 165	Val	Ala	Glu	Phe	Asn 170	Phe	Ser	Leu	Lys	Lys 175	Ile
Thr	Glu	Lys	Leu 180	Asn	Gln	Gln	Ile	Glu 185	Asn	Leu	Ser	Thr	Lys 190	Ile	Thr
Asn	Phe	Ala 195	Asp	Glu	Lys	Thr	Ser 200	Ser	Gln	Lys	Asp	Pro 205	Ser	Thr	Leu
Arg	Ala 210	Ile	Asp	Phe	Gln	Tyr 215	Asp	Leu	Asn	Thr	Ala 220	Arg	Asn	Pro	Glu
Asp 225	Leu	Asp	Ile	Lys	Leu 230	Ala	Asn	Tyr	Phe	Pro 235	Val	Leu	Lys	Asn	Leu 240
Ile	Asn	Arg	Leu	Asn 245	Asn	Ala	Pro	Glu	Asn 250	Lys	Leu	Pro	Asn	Asn 255	Leu
Gly	Asn	Ile	Phe 260	Glu	Phe	Ser	Phe	Ala 265	Lys	Asp	Ser	Ser	Thr 270	Asn	Gln
Tyr	Val	Ser 275	Ile	Gln	Asn	Gln	Ile 280	Pro	Ser	Leu	Phe	Leu 285	Lys	Ala	Asp
Leu	Ser 290	Gln	Ser	Ala	Arg	Glu 295	Ile	Leu	Ala	Ser	Pro 300	Asp	Glu	Val	Gln
Pro 305	Val	Ile	Asn	Ile	Leu 310	Arg	Leu	Met	ГÀа	Lys 315	Asp	Asn	Ser	Ser	Tyr 320
Phe	Leu	Asn	Phe	Glu 325	Asp	Phe	Val	Asn	Asn 330	Leu	Thr	Leu	ГÀа	Asn 335	Met
Gln	Lys	Glu	Asp 340	Leu	Asn	Ala	Lys	Gly 345	Gln	Asn	Leu	Ser	Ala 350	Tyr	Glu
Phe	Leu	Ala 355	Asp	Ile	ràs	Ser	Gly 360	Phe	Phe	Pro	Gly	Asp 365	ГÀз	Arg	Ser
Ser	His 370	Thr	ГÀЗ	Ala	Glu	Ile 375	Ser	Asn	Leu	Leu	Asn 380	ГÀЗ	ГÀЗ	Glu	Asn
Ile 385	Tyr	Asp	Phe	Gly	Lys 390	Tyr	Asn	Gly	Lys	Phe 395	Asn	Asp	Arg	Leu	Asn 400
Ser	Pro	Asn	Leu	Glu 405	Tyr	Ser	Leu	Asp	Ala 410	Ala	Ser	Ala	Ser	Leu 415	Asp
ГÀа	Lys	Asp	Lys 420	Ser	Ile	Val	Leu	Ile 425	Pro	Tyr	Arg	Leu	Glu 430	Ile	Lys
Asp	Lys	Phe 435	Phe	Ala	Asp	Asp	Leu 440	Tyr	Pro	Asp	Thr	Lys 445	Asp	Asn	Ile
Leu	Val 450	Lys	Glu	Gly	Ile	Leu 455	Lys	Leu	Thr	Gly	Phe 460	ГÀа	Lys	Gly	Ser
Lys 465	Ile	Asp	Leu	Pro	Asn 470	Ile	Asn	Gln	Gln	Ile 475	Phe	ГÀв	Thr	Glu	Tyr 480
Leu	Pro	Phe	Phe	Glu 485	Lys	Gly	Lys	Glu	Glu 490	Gln	Ala	Lys	Leu	Asp 495	Tyr
Gly	Asn	Ile	Leu 500	Asn	Pro	Tyr	Asn	Thr 505	Gln	Leu	Ala	Lys	Val 510	Glu	Val
Glu	Ala	Leu 515	Phe	ГЛа	Gly	Asn	Lys 520	Asn	Gln	Glu	Ile	Tyr 525	Gln	Ala	Leu
Asp	Gly 530	Asn	Tyr	Ala	Tyr	Glu 535	Phe	Gly	Ala	Phe	Lys 540	Ser	Val	Leu	Asn

Ser 545	Trp	Thr	Gly	Lys	Ile 550	Gln	His	Pro	Glu	Lys 555	Ala	Asp	Ile	Gln	Arg 560
Phe	Thr	Arg	His	Leu 565	Glu	Gln	Val	Lys	Ile 570	Gly	Ser	Asn	Ser	Val 575	Leu
Asn	Gln	Pro	Gln 580	Thr	Thr	Lys	Glu	Gln 585	Val	Ile	Ser	Ser	Leu 590	Lys	Ser
Asn	Asn	Phe 595	Phe	Lys	Asn	Gly	His 600	Gln	Val	Ala	Ser	Tyr 605	Phe	Gln	Asp
Leu	Leu 610	Thr	Lys	Asp	Lys	Leu 615	Thr	Ile	Leu	Glu	Thr 620	Leu	Tyr	Aap	Leu
Ala 625	Lys	Lys	Trp	Gly	Leu 630	Glu	Thr	Asn	Arg	Ala 635	Gln	Phe	Pro	Lys	Gly 640
Val	Phe	Gln	Tyr	Thr 645	Lys	Asp	Ile	Phe	Ala 650	Glu	Ala	Asp	Lys	Leu 655	ГХа
Phe	Leu	Glu	Leu 660	Lys	Lys	Lys	Asp	Pro 665	Tyr	Asn	Gln	Ile	Lys 670	Glu	Ile
His	Gln	Leu 675	Ser	Phe	Asn	Ile	Leu 680	Ala	Arg	Asn	Asp	Val 685	Ile	Lys	Ser
Asp	Gly 690	Phe	Tyr	Gly	Val	Leu 695	Leu	Leu	Pro	Gln	Ser 700	Val	ГЛа	Thr	Glu
Leu 705	Glu	Gly	Lys	Asn	Glu 710	Ala	Gln	Ile	Phe	Glu 715	Ala	Leu	ГÀа	Lys	Tyr 720
Ser	Leu	Ile	Glu	Asn 725	Ser	Ala	Phe	Lys	Thr 730	Thr	Ile	Leu	Asp	Lys 735	Asn
Leu	Leu	Glu	Gly 740	Thr	Asp	Phe	Lys	Thr 745	Phe	Gly	Asp	Phe	Leu 750	Lys	Ala
Phe	Phe	Leu 755	Lys	Ala	Ala	Gln	Phe 760	Asn	Asn	Phe	Ala	Pro 765	Trp	Ala	ГÀв
Leu	Asp 770	Asp	Asn	Leu	Gln	Tyr 775	Ser	Phe	Glu	Ala	Ile 780	Lys	Lys	Gly	Glu
Thr 785	Thr	Lys	Glu	Gly	Lys 790	Arg	Glu	Glu	Val	Asp 795	ГÀЗ	ГÀЗ	Val	Lys	Glu 800
Leu	Asp	Asn	Lys	Ile 805	Lys	Gly	Ile	Leu	Pro 810	Gln	Pro	Pro	Ala	Ala 815	ГÀа
Pro	Glu	Ala	Ala 820	Lys	Pro	Val	Ala	Ala 825	Lys	Pro	Glu	Thr	Thr 830	Lys	Pro
Val	Ala	Ala 835	Lys	Pro	Glu		Ala 840		Pro	Glu		Ala 845	Lys	Pro	Val
Ala	Ala 850	Lys	Pro	Glu	Ala	Ala 855	Lys	Pro	Val	Ala	Ala 860	Lys	Pro	Glu	Ala
Ala 865	Lys	Pro	Val	Ala	Ala 870	Lys	Pro	Glu	Ala	Ala 875	Lys	Pro	Val	Ala	Ala 880
Lys	Pro	Glu	Ala	Ala 885	Lys	Pro	Val	Ala	Thr 890	Asn	Thr	Gly	Phe	Ser 895	Leu
Thr	Asn	Lys	Pro 900	Lys	Glu	Asp	Tyr	Phe 905	Pro	Met	Ala	Phe	Ser 910	Tyr	ГÀа
Leu	Glu	Tyr 915	Thr	Asp	Glu	Asn	Lys 920	Leu	Ser	Leu	Lys	Thr 925	Pro	Glu	Ile
Asn	Val 930	Phe	Leu	Glu	Leu	Val 935	His	Gln	Ser	Glu	Tyr 940	Glu	Glu	Gln	Glu
Ile 945	Ile	Lys	Glu	Leu	Asp 950	Lys	Thr	Val	Leu	Asn 955	Leu	Gln	Tyr	Gln	Phe 960

60

55 56

-continued

Gln Glu Val Lys Val Thr Ser Asp Gln Tyr Gln Lys Leu Ser His Pro 965 Met Met Thr Glu Gly Ser Ser Asn Gln Gly Lys Lys Ser Glu Gly Thr

Pro Asn Gln Gly Lys Lys Ala Glu Gly Ala Pro Asn Gln Gly Lys Lys

1000 Ala Glu Gly Thr Pro Asn Gln Gly Lys Lys Ala Glu Gly Ala Pro 1015

Ser Gln Gln Ser Pro Thr Thr Glu Leu Thr Asn Tyr Leu Pro Asp 1030

Leu Gly Lys Lys Ile Asp Glu Ile Ile Lys Lys Gln Gly Lys Asn

Trp Lys Thr Glu Val Glu Leu Ile Glu Asp Asn Ile Ala Gly Asp 1060

Ala Lys Leu Leu Tyr Phe Ile Leu Arg Asp Asp Ser Lys Ser Gly 1075

Asp Pro Lys Lys Ser Ser Leu Lys Val Lys Ile Thr Val Lys Gln 1085 1090 1095

ggtacctccg tggattgttc tccagcagtc ttccaaaatt gcaaagtagt aatcctccga

Ser Asn Asn Gln Glu Pro Glu Ser Lys 1100 1105

<210> SEO ID NO 5 <211> LENGTH: 1773

<212> TYPE: DNA

<213> ORGANISM: Porcine circovirus

<400> SEQUENCE: 5

tagagagett ctacagetgg gacageagtt gaggagtace attectgggg ggeetgattg 120 ctggtaatca aaatactgcg ggccaaaaaa ggaacagtac cccctttagt ctctacagtc 180 aatggatacc ggtcacacag teteagtaga teateecaag gtaaccagee ataaaaatea 240 tocaaaacaa caacttotto tocatgatat coatocoaco acttatttot actaggotto 300 cagtaggtgt ccctaggctc agcaaaatta cgggcccact ggctcttccc acaaccgggc 360 gggcccacta tgacgtgtac agctgtcttc caatcacgct gctgcatctt cccgctcact 420 ttcaaaagtt cagccagccc gcggaaattt ctcacatacg ttacaggaaa ctgctcggct 480 acagtcacca aagaccccgt ctccaaaagg gtactcacag cagtagacag gtcgctgcgc ttcccctggt tccgcggagc tccacactcg ataagtatgt ggccttcttt actgcagtat tetttattet getggteggt teettteget ttetegatgt ggeageggge accaaaatae cacttcacct tgttaaaagt ctgcttctta gcaaaattcg caaacccctg gaggtgagga gttctaccct cttccaaacc ttcctcgcca caaacaaaat aatcaaaaag ggagattgga 780 ageteeegta ttttgttttt eteeteeteg gaaggattat taagggtgaa eacceaeete 840 ttatggggtt gegggeeget tttettgett ggeattttea etgaegetge egaggtgetg 900 ccgctgccga agtgcgctgg taatactaca gcagcgcact tctttcactt ttataggatg acgtatccaa ggaggcgtta ccgcagaaga agacaccgcc cccgcagcca tcttggccag 1020 atcetecgee geogeocetg getegtecae eccegecace getacegttg gagaaggaaa 1080 aatqqcatct tcaacacccq cctctcccqc accttcqqat atactqtcaa qqctaccaca 1140 gtcagaacgc cctcctgggc ggtggacatg atgagattta atattgacga ctttgttccc 1200 ccgggagggg ggaccaacaa aatctctata ccctttgaat actacagaat aagaaaggtt 1260

aaggttgaat totggoodtg otococcato accoagggtg ataggggagt gggotcoact	1320
gctgttattc tagatgataa ctttgtaaca aaggccacag ccctaaccta tgacccatat	1380
gtaaactact cctcccgcca tacaatcccc caacccttct cctaccactc ccgttacttc	1440
acacccaaac ctgttcttga ctccaccatt gattacttcc aaccaaataa caaaaggaat	1500
cagetttgga tgaggetaea aacetetaga aatgtggaee aegtaggeet eggeaetgeg	1560
ttcgaaaaca gtatatacga ccaggactac aatatccgtg taaccatgta tgtacaattc	1620
agagaattta atettaaaga eeeeceaett aaaceetaaa tgaataaaaa taaaaaceat	1680
tacgatgtga taacaaaaaa gactcagtaa tttattttat	1740
gggtccactg cttcaaatcg gccttcgggt acc	1773
<210> SEQ ID NO 6 <211> LENGTH: 702 <212> TYPE: DNA <213> ORGANISM: Porcine circovirus	
<400> SEQUENCE: 6	
atgacgtate caaggaggeg ttacegeaga agaagacace geeeeegeag ceatettgge	60
cagatectee geogeogece etggetegte caceeeegee acegetaceg ttggagaagg	120
aaaaatggca tetteaacae eegeetetee egeacetteg gatataetgt caaggetace	180
acagtcagaa egeeeteetg ggeggtggae atgatgagat ttaatattga egaetttgtt	240
cccccgggag gggggaccaa caaaatctct ataccctttg aatactacag aataagaaag	300
gttaaggttg aattetggee etgeteeeee ateaceeagg gtgatagggg agtgggetee	360
actgctgtta ttctagatga taactttgta acaaaggcca cagccctaac ctatgaccca	420
tatgtaaact acteeteeeg ceatacaate eeceaaceet teteetacea eteeegttae	480
ttcacaccca aacctgttct tgactccacc attgattact tccaaccaaa taacaaaagg	540
aatcagettt ggatgagget acaaacetet agaaatgtgg accaegtagg eeteggeact	600
gogttogaaa acagtatata ogaccaggac tacaatatoo gtgtaaccat gtatgtacaa	660
ttcagagaat ttaatcttaa agacccccca cttaaaccct aa	702
<210> SEQ ID NO 7 <211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: Porcine circovirus <400> SEQUENCE: 7	
Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg	
Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 25 30	
Arg His Arg Tyr Arg Trp Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 40 45	
Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 55 60	
Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 70 75 80	
Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 95	
Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr 100 105 110	

59 60

-continued Gln Gly Asp Arg Gly Val Gly Ser Thr Ala Val Ile Leu Asp Asp Asn Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr 135 Ser Ser Arg His Thr Ile Pro Gln Pro Phe Ser Tyr His Ser Arg Tyr Phe Thr Pro Lys Pro Val Leu Asp Ser Thr Ile Asp Tyr Phe Gln Pro Asn Asn Lys Arg Asn Gln Leu Trp Met Arg Leu Gln Thr Ser Arg Asn Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Ile Tyr Asp Gln Asp Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe Asn Leu Lys Asp Pro Pro Leu Lys Pro <210> SEO ID NO 8 <211> LENGTH: 1767 <212> TYPE: DNA <213 > ORGANISM: Porcine circovirus <400> SEOUENCE: 8 qqtacctccq tqqattqttc tccaqcaqtc ttccaaaatt qcaaaqtaqt aatcctccqa

tagagagett etacagetgg gacageagtt gaggagtace attectgggg ggeetgattg 120 ctggtaatca aaatactgcg ggccaaaaaa ggaacagtac cccctttagt ctctacagtc 180 aatggatacc ggtcacacag tctcagtaga tcatcccaag gtaaccagcc ataaaaatca 240 tocaaaacaa caacttotto tocatgatat coatocoaco acttatttot actaggotto 300 cagtaggtgt cgctaggctc agcaaaatta cgggcccact ggctcttccc acaaccgggc 360 gggcccacta tgacgtgtac agctgtcttc caatcacgct gctgcatctt cccgctcact 420 ttcaaaagtt cagccagccc gcggaaattt ctcacatacg ttacagggaa ctgctcggct 480 acagtcacca aagaccccgt ctccaaaagg gtactcacag cagtagacag gtcgctgcgc 540 ttcccctggt tccgcggagc tccacactcg ataagtatgt ggccttcttt actgcagtat 600 tetttattet getggteggt teettteget ttetegatgt ggeageggge accaaaatae cacttcacct tgttaaaagt ctgcttctta gcaaaattcg caaacccctg gaggtgagga gttctaccct cttccaaacc ttcctctccg caaacaaaat aatcaaaaag ggagattgga 780 agetecegta ttttgttttt etecteeteg gaaggattat taagggtgaa eacceacete 840 ttatqqqqtt qcqqqccqct tttcctqctt qqcattttca ctqacqctqc cqaqqtqctq 900 ccqctqccqa aqtqcqctqq taatactaca qcaqcqcact tctttcactt ttataqqatq 960 acgtatecaa ggaggegtta cegeagaaga agacacegee ceegeageea tettggeeag 1020 atcetecgee geogeocetg getegtecae eccegecace getacegttg gagaaggaaa 1080 aatggcatct tcaacacccg cctctcccgc accttcggat atactgtcaa ggctaccaca 1140 gtcagaacgc cctcctgggc ggtggacatg atgagattta atattgacga ctttgttccc 1200 ccgggagggg ggaccaacaa aatctctata ccctttgaat actacagaat aagaaaggtt 1260 aaggttgaat tetggeeetg eteceecate acceagggtg ataggggagt gggeteeact 1320 gctgttattc tagatgataa ctttgtaaca aaggccacag ccctaaccta tgacccatat 1380

gtaaactact ecteoegeca taeaatogec caacecttet ectaccacte cegitactic cacacaaaaa etgitetiga teeaecaati gattaettee aacecaaaaaa caaaaagaaa 1500 cagettigga tagagectaa aacetcaga aagtiggace aegtaggect oggecatege 1560 ttogaaaaaa gtataaaga ocaaggacta aatateegig taeacaataa 1680 taegatgiga taeacaaaaaa gaccagaaa titaattitat atgggaaaaa ggcacagggt 1740 gggtocactg ottoaaateg goottog 1767 <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	-continued	
cagettigga tgaggetaca aacetetaga aatgiggace aegtaggeet eggeatetegg teogaaaca gtatatacga coaggactac aatatoogtg taaccatgta tgtaccatte 1620 agagaattta atcttaaaga cocccactt aacecetaaa tgaataaasa taaaaaccat 1680 tacqaatgtga taaccaaaaaa gaccagtaa ttattitat atgggaaaag ggcacagggt 1740 gggtocactg ottocaatog goottog 1767 4210- SEQ ID NO 9 2211- INNOTE: 702 4212- TYPE: DER 4213- OKROMISH. Porcine circovirus 4400- SEQUENCE: 9 atgacgtate caaggaggeg ttaccgcaga agaagaacac gcccccgcag caacettgge 60 cagaacettee gecgecgece ctggetegte cacceccoge accgetacg ttggaagaagg 120 aaaaatggca tottoaacac ecgetetec egeacetteg gatatactgt caaggetace acagtcagaa egecctectg ggegtggac atgatgagat ttaatattga cgacettgtt 240 cccccggaga gggggaccaa caaaatoct atacccttig aatatactga caataaqaag gttaaggttg aattetggec ctgctcccc accaccagg gtgatagggg agtggggtcc 360 actgctgtta ttotagatga taacttgta acaaaggca cagcctaca ctatgaccca 420 tatgtaaact actcctccg caatcacate geccaacet ttoctacca cteccgttac 420 tccaaccaca aacctgttct tgactccacc atgattact tccaaccaaa taacaaaagg 540 gegtegaaa acagtatata cgaccaggac tagaagtgg accaggtagg cctcggcact 600 gegtegaaa acagtatata cgaccaggac tagaactgg gg accaggtagg cctgggact 600 gegtegaaa acagtatata cgaccaggac tagaacet ag 15 Ser His Leu (1) 01n 11e Leu Arg Arg Arg Arg Arg His Arg Pro Arg 1	gtaaactact cctcccgcca tacaatcgcc caacccttct cctaccactc ccgttacttc	1440
ttogaaaaca gtatatacga ccaggactac aatatcogtg taaccatgta tgtacaatte agaggaattta atottaaaga cccccactt aascoctaaa tgaataaaaa taaaaaccat 1680 tacgatgtgs taacaaaaaa gactcagtaa tttatttat atgggaaaag ggacaagggt 1740 gggtccactg cttcaaatcg gcottcg 1767	acacccaaac ctgttcttga ctccaccatt gattacttcc aaccaaataa caaaaggaat	1500
agagaattta atettaaaga coccocactt aaacoctaaa tgaataaaaa taaaaaacat 1690 tacgatgtga taacaaaaaa gactcagtaa tttatttat atgggaaaag ggcacagggt 1740 gggtccactg cttcaaaateg gcetteg 1767 *210> SEO ID NO 9 *211- LERNTH- 702 *212- TYPE DNA *212- OKCONITSN- Porcine circovirus *400> SEOUENCE: 9 adagactatc caaggaggg ttaccgcaga agaagacacc gcccccgcag ccatcttgge 60 cagatcctcc gccgccgcc ctggstcgtc cacccccgc accgctaccg ttggagaagg 120 aaaaaaggca tcttcaacac cogcctctcc gccaccttgg gatatactgt caaggctacc 180 acagtcagaa cgccctcctg ggcggtggac atgatgagat ttaatattga cgactttgtt 240 cccccgggag gggggaccaa caaaatctct atacccttg aatactacag aataaggaaag 300 gttaasggtg aattetggcc ctgctccccc atcacccagg gtgatagggg atgatggggtcc 360 actgctgtta ttctagatga taacttgta acaaaggcca cagcctaac ctatgaccca 420 tatgtaaact actcotcccg ccatacaatc geccaaccet tctcctacca ctacgaccca 420 tatgtaaact actcotcccg ccatacaatc geccaaccet tctcctacca ctccggtcac 400 gcgttcgaaa acagtatta cgaccaggac tacaatatcc gtgtaaccat gtatgtacaa 660 ttccagagaat ttaatcttaa agaccccca cttaaaccct aa **210- SEO ID NO 10 **211- LERNTH: 233 **212- TYPE: PFR **212- OKCANIESH: Porcine circovirus **400> SEOUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1	cagetttgga tgaggetaca aacetetaga aatgtggace aegtaggeet eggeaetgeg	1560
tacqatqtqa taacaaaaa gactcaqtaa tttattta atgggaaaag ggcacagggt 210. SEQ ID NO 9 *211. LERNOTH: 702 *212. TYPE: DNA *213. ORCANISM: Porcine circovirus *400. SEQUENCE: 9 atgacqtac caaggaggg ttaccgcaga agaagacac gecccogcag ccatcttggc cagatcotcc gecgecgece ctgggtetgte caccecege acceptaceg ttgggagaagg 120 aaaaatggca bettcaacac ccgcetetec ggcacettgg gatatactgt caaggetace 180 acagtcagaa cgccetectg ggcggtggac atgataggat ttaatattga cgacttgtt 240 cccccgggag gggggaccaa caaaatetet ataccettg aatactga aataaggaaag 300 gttaaggttg aattetggce ctgctcccc atcaccagg gtgatagggg agtgggctcc 360 actgctgtta ttctagatga taacttgta acaaaggca cagcctaac ctatgaccaa 420 tatgtaaact actceteceg ccatacaac gccaaccet tetestacca ctcccgtac 480 ttcacacca aacctgtttet tgactcacac attgattact tocaaccaaa taacaaaagg 540 aattagttg gatgaggct acaaaactct agaaatgtg accacgtag cetcggcact 600 gcgttcgaaa acagtatata cgaccaggac tacaatatec gtgtaaccat gtatgtacaa 660 ttcagagaat ttaacttaa agaccecca cttaaaccet aa 702 *210. SEQ ID NO 10 *211. LERNOTH: 233 *212. TYPE: PRT *213. ORCANISM: Percine circovirus *400. SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 S 10 Ser His Leu Gly Gln He Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 Arg His Arg Tyr Arg Trp Arg Arg Lys Asm Gly He Phe Asm Thr Arg 45 *40 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Amp Met Met Arg Phe Am Ile Asp Amp Phe Val 75 Fro Ser Trp Ala Val Amp Met Met Arg Phe Am Ile Asp Amp Phe Val 75 *50 Pro Pro Gly Gly Gly Thr Asm Lys He Ser Ile Pro Phe Glu Tyr Tyr 95 Arg His Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro 11e Thr	ttcgaaaaca gtatatacga ccaggactac aatatccgtg taaccatgta tgtacaattc	1620
210. SEQ ID NO 9 2211. LENGTH: 702 2212. TYPE: DNA 2213. ORGANISM: Porcine circovirus 2400. SEQUENCE: 9 atgacgtate casagsaggg tracegosas agsagacace geococogoa ccatettege casarcetce geogoegece etgettegte caccocogo acceptaceg tragagsasgg 120 asasatggca tottcasacac cogocotoco egeacetteg gatatactgt casagstaco 180 acagracagaa egecetectg geogotysac atgatgagat tratatatatga egacttigtt 240 cccccogogaa gogogogaccaa casaatette ataccettg atatactacaa ataacgasaa 300 gitaaggtig aattetggce etgeteccec atcaccagg gigatagggg agigggete 160 actgetgtta tictagatga taactitgta acaaaggca cagcectaac ctatgacca 420 tatgaaact actceteceg ccatacaate gecosaacet tetectacca etcocgtac 480 ttcacacca sacctgitet igactecaca atgattact tecaaccaaa taacaasaagg 540 aatcagciti ggatgagget acaaacet agsaatigg accacgtage ceteggeact 600 gegitegasa acagtatata egaccaggac tacaatatec gigaacca gatgitagaa acagtatata acgaccaggac tacaatatec gigaacca gatgitagaa 210. SEQ ID NO 10 210. SEQ ID NO 10 2210. SEQ ID NO 10 22	agagaattta atcttaaaga cccccactt aaaccctaaa tgaataaaaa taaaaaccat	1680
2110 SEQ ID NO 9 2111 LENGTH: 702 2112 TYPE: DNA 2113 LENGTH: Forcine circovirus 2100 SEQUENCE: 9 atgacqtatc caaggaggg ttaccgcaga agaagacacc gcccccgcag ccatcttggc 60 cagatcctcc gccgcccc ctggctcgtc cacccccgcc accgctaccg ttggagaagg 120 aaaaatggca tcttcaacac ccqcctctcc cqcaccttcg gatatactgt caaggctacc 180 acagtcagaa cgccctcctg ggcggtggac atgatgagat ttaatattga caactttgtt 240 cccccgggag gggggaccaa caaaatctct ataccctttg aatactacag aataagaag 300 gtraaggttg aatctggcc ctgctccccc atcaccacgg gtgatagggg ggtgggctc 360 actgctgtta ttctagatga taactttgta acaaaggcca caccctacac ctatgaccca 420 tatgtaaaact actcctcccg ccatacaatc gcccaaccct tctcctacca ctcccgttac 480 ttcacaccca aacctgttct tgactcccac attgattact tccaaccaaa taacaaaagg 540 aatcagcttt ggatgaaggt cacaacctct agaaatgtga accacgtagg cctcggcact 600 gcgttcgaaa acagtatata cgaccaggac tacaatacc gtgtaaccat gtatgtacaa 660 ttcagagaat ttaacttaa agaccccca cttaaaccct aa 702 *210 SEQ ID NO 10 *211 LENGTH: 233 *212 YPPE: PRT *2123 YPPE: PRT *213 ORGANISM: Porcine circovirus *400 SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 5 In 15 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 Arg His Arg Tyr Arg Trp Arg Arg Lys Ann Gly Ile Phe Aen Thr Arg 15 Arg His Arg Tyr Arg Trp Arg Arg Lys Ann Gly Ile Phe Aen Thr Arg 15 For Pro Gly Gly Gly Thr Aen Lys Ile Ser Ile Pro Phe Glu Tyr Tyr Fyr 80 Fro Pro Gly Gly Gly Thr Aen Lys Ile Ser Ile Pro Phe Glu Tyr Tyr Tyr 80 Fro Pro Gly Gly Gly Thr Aen Lys Ile Ser Ile Pro Phe Glu Tyr Tyr Fyr 80 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	tacgatgtga taacaaaaaa gactcagtaa tttattttat	1740
### ### ##############################	gggtccactg cttcaaatcg gccttcg	1767
atgacgtate caaggaggeg ttaccgcaga agaagacac gcccccgcag ccatcttggc 60 cagatcetce gccgccccc etggetegte cacccccgc accgctaccg ttggagaagg 120 aaaaatggca tettcaacac ecgectetce egcacetteg gatatactgt caaggetacc 180 acagtragaa egccctcetg ggeggtggac atgatgagat ttaatattga egactttgtt 240 cccccgggag gggggaccaa caaaatetet ataccettg aatactacag aataagaaag 300 gttaaggttg aattetggce etgetecccc atcacccagg gtgatagggg agtggggetec 360 actgetgtta ttetagatga taactttgta acaaaggca cagcctaac etatgaccca 420 tatgtaaact actcctcccg ccatacaate gcccaaccet tetectacca etcccgttac 480 ttcacaccca aacctgttet tgatcccacc attgattact tccaaccaaa taacaaaagg 540 aatcagettt ggatgagget acaaacctet agaaatgtgg accacgtagg cctcggcact 600 gcgttcgaaa acagtatata egaccaggac tacaatatcc gtgtaaccat gtatgtacaa 660 ttcagagaat ttaatcttaa agaccccca ettaaaccct aa 702 <210 > SEQ ID NO 10 <211 > LENOTH: 233 <212 > TYPE: PRT <131	<211> LENGTH: 702 <212> TYPE: DNA	
aaaatggga tcttcaacac ccgcctctcc cgaccctcg gatatactgt caaggctacc 180 acagtcagaa cgccctctg ggcggtggac atgatgagat ttaatattga cgactttgtt 240 cccccgggag gggggaccaa caaaatctt ataccctttg aatactacag aataagaaag 300 gttaaggttg aattctggcc ctgctccccc atcacccagg gtgatagggg agtggggctcc 380 actgctgtta ttctagatga taacttgta acaaaggca cagcctaac ctatgaccca 420 tatgtaaact actcctcccg ccatacaatc gcccaacct tctcctacca ctcccgttac 480 ttcacacca aacctgttct tgactccacc attgattact tccacaccaaa taacaaaagg 540 aatcagcttt ggatgaggct acaaacctct agaaatgtgg accacgtagg cctcggcact 600 gcgttcgaaa acagtatata cgaccaggac tacaatacc gtgtaaccat gtatgtacaa 660 ttcagagaat ttaatcttaa agaccccca cttaaaccct aa 702 <210 > SEQ ID NO 10 <211 > LENGTH: 233 <212 > TYPE: PET <213 > ORGANISM: Porcine circovirus <400 > SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Arg Arg Arg Arg Arg His Arg Pro Arg 1 5 10 15 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 45 45 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Asp Met Net Arg Phe Ann Ile Asp Asp Phe Val 75 For Ser Trp Ala Val Asp Met Net Arg Phe Ann Ile Asp Asp Phe Val 75 85 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	<400> SEQUENCE: 9	
acaataggca tettcaacac ecgcetetec egcacetteg gatatactgt caaggetace 180 acagtcagaa egcectectg ggeggtggac atgatgagat ttaatattga egactttgtt 240 ccccegggag gggggaccaa caaaatetet ataceetttg aatactacag aataagaaag 300 gttaaggttg aattetggec etgetecece atcaccagg gtgatagggg agtggggetec 360 actgetgtta ttetagatga taactttgta acaaaggeca cagecetaac etatgaceca 420 tatgtaaact acteeteeg ceatacaate geceaaceet teteetacea etecegttac 480 ttecacacca aacetgttet tgactecace attgattact tecaaccaaa taacaaaagg 540 aatcagettt ggatgagget acaaacetet agaaatgtgg accacgtagg ceteggeact 600 gegttegaaa acagtatata egaccaggac tacaatatee gtgtaaccat gtatgtacaa 660 ttecagagaat ttaatettaa agaccecca ettaaccet aa 702 <210 > SEQ ID NO 10 <211 > LENGTH: 233 <212 > TVPE: PRT <213 > ORGANISM: Porcine circovirus <400 > SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg Pro Trp Leu Val His Pro 20 30 Arg His Arg Tyr Arg Trp Arg Arg Arg Pro Trp Leu Val His Pro 20 45 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 35 40 45 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lye Ala Thr Thr Val Arg Thr 50 55 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asm Ile Asp Asp Phe Val 65 70 70 75 80 Arg Ile Arg Lye Val Lye Val Glu Phe Trp Pro Cye Ser Pro Ile Thr	atgacgtatc caaggaggcg ttaccgcaga agaagacacc gcccccgcag ccatcttggc	60
acagtcagaa cgccctcctg ggcggtggac atgatgagat ttaatattga cgactttgtt 240 cccccgggag gggggaccaa caaaatctct ataccctttg aatactacag aataagaaag 300 gtaaggttg aattctggcc ctgctccccc atcacccagg gtgatagggg agtgggtcc 360 actgctgtta ttctagatga taactttgta acaaaggcca cagccctaac ctatgaccca 420 tatgtaaact actcctcccg ccataccaatc gcccaaccct tctcctacca ctcccgttac 480 ttcacaccca aacctgttct tgactccacc attgattact tccaaccaaa taacaaaaagg 540 aatcagcttt ggatgagget acaaacctct agaaatgtgg accacgtagg cctcggcact 600 gcgttcgaaa acagtatata cgaccaggac tacaatatcc gtgtaaccat gtatgtacca 660 ttcagagaat ttaatcttaa agaccccca cttaaaccct aa 702 <pre> <inometical 10<="" id="" no="" seq="" td=""><td>cagatectee geegeegeee etggetegte caceceegee acegetaceg ttggagaagg</td><td>120</td></inometical></pre>	cagatectee geegeegeee etggetegte caceceegee acegetaceg ttggagaagg	120
gttaggttg aattetggee etgeteceee ateaceagg gtgatagggg agtggggetee 360 actgetgtta ttetagatga taactttgta acaaaggeea cagecetaac etatgaceea 420 tatgtaaaact acteeteeg ceatacaate geecaaceet tetectacea etceegttae 480 tteacaceca aacetgttet tgatecace attgattaet teeaaceaaa taacaaaagg 540 aatcagettt ggatgagget acaaacetet agaaatgtgg accaegtagg ceteggeact 600 gegttegaaa acagtatata egaceaggae tacaatatee gtgtaaceat gtatgtacaa 660 tteagagaat ttaatettaa agaceececa ettaaaceet aa 702 <210 > SEQ ID NO 10 <211 > LENGTH: 233 <212 > TYPE: PRT <213 > ORGANISM: Porcine circovirus <400 > SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 5 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Arg Pro Trp Leu Val His Pro 20 25 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 40 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val App Met Met Arg Phe Arg Phe De Val 65 70 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 80 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	aaaaatggca tetteaacae eegeetetee egeaeetteg gatataetgt caaggetace	180
gttaaggttg aattetggce etgetecece ateacecagg gtgatagggg agtggcte 360 actgetgtta tetagatga taactttgta acaaaggeca cagecetaac etatgaceca 420 tatgtaaact acteeteceg ceatacaate geceaaceet tetectacea etecegtace 480 tteacaceca aacetgttet tgatecace attgattact tecaaceaa taacaaaagg 540 aatcagettt ggatgagget acaaaceetet agaaatgtgg accacgtagg eeteggeaet 600 gegttegaaa acagtatata egaceaggae tacaatatee gtgtaaceat gtatgtacaa 660 tteagagaat ttaateetaa agaceececa ettaaaceet aa 702 <210 > SEO ID NO 10 <211 > LENGTH: 233 <212 > TYPE: PRT <213 > ORGANISM: Porcine circovirus <400 > SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 15 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 30 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 40 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 55 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 70 75 80 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	acagtcagaa cgccctcctg ggcggtggac atgatgagat ttaatattga cgactttgtt	240
actgctgtta ttctagatga taactttgta acaaaggcca cagccctaac ctatgaccca 420 tatgtaaact actcctcccg ccatacaatc gcccaaccct tctcctacca ctcccgttac 480 ttcacaccca aacctgttct tgactccacc attgattact tccaaccaa taacaaaagg 540 aatcagcttt ggatgaggct acaaacctct agaaatgtgg accacgtagg cctcggcact 600 gcgttcgaaa acagtatata cgaccaggac tacaatatcc gtgtaaccat gtatgtacaa 660 ttcagagaat ttaatcttaa agaccccca cttaaaccct aa 702 <210 > SEQ ID NO 10 <211 > LENGTH: 233 <212 > TYPE: PRT <213 > ORGANISM: Porcine circovirus <440 > SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 5 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 70 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	cccccgggag gggggaccaa caaaatctct ataccctttg aatactacag aataagaaag	300
tatgtaaact actecteeg ceatacaate geceaacet tetectacea etecegttae tteacaceca aacetgttet tgatecace attgattact tecaaceaa taacaaaagg 540 aateagettt ggatgagget acaaacetet agaaatgtgg accaegtagg ecteggeact 600 gegttegaaa acagtatata egaceaggac tacaatatee gtgtaaceat gtatgtacaa 660 tteagagaat ttaatettaa agaceececa ettaaaceet aa 702 <210	gttaaggttg aattetggee etgeteeece ateaeceagg gtgatagggg agtgggetee	360
ttcacaccca aacctgttct tgactccacc attgattact tccaaccaaa taacaaaagg 540 aatcagcttt ggatgaggct acaaaacctct agaaatgtgg accacgtagg cctcggcact 600 gcgttcgaaa acagtatata cgaccaggac tacaatatcc gtgtaaccat gtatgtacaa 660 ttcagagaat ttaatcttaa agaccccca cttaaaccct aa 702 <210> SEQ ID NO 10 <211> LENGTH: 233 <212- TYPE: PRT <213- ORGANISM: Porcine circovirus <400> SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 15 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 30 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 45 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 60 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 70 75 80 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	actgctgtta ttctagatga taactttgta acaaaggcca cagccctaac ctatgaccca	420
aatcagcttt ggatgaggct acaaacctct agaaatgtgg accacgtagg cctcggcact gcgttcgaaa acagtatata cgaccaggac tacaatatcc gtgtaaccat gtatgtacaa ttcagagaat ttaatcttaa agaccccca cttaaaccct aa 702 <pre> <210> SEQ ID NO 10 <211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: Porcine circovirus </pre> <pre> <400> SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1</pre>	tatgtaaact actecteeeg ceatacaate geecaaceet teteetacea etecegttae	480
gcgttcgaaa acagtatata cgaccaggac tacaatatcc gtgtaaccat gtatgtacaa 660 ttcagagaat ttaatcttaa agaccccca cttaaaccct aa 702 <210 > SEQ ID NO 10 <211 > LENGTH: 233 <212 > TYPE: PRT <213 > ORGANISM: Porcine circovirus <400 > SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 5 10 15 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 25 30 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 40 45 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 55 60 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 70 75 80 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	ttcacaccca aacctgttct tgactccacc attgattact tccaaccaaa taacaaaagg	540
ttcagagaat ttaatettaa agaccecca ettaaaceet aa 702 <210> SEQ ID NO 10 <211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: Porcine circovirus <400> SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1	aatcagcttt ggatgaggct acaaacctct agaaatgtgg accacgtagg cctcggcact	600
<pre> <210> SEQ ID NO 10 <211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: Porcine circovirus </pre> <pre> <400> SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1</pre>	gcgttcgaaa acagtatata cgaccaggac tacaatatcc gtgtaaccat gtatgtacaa	660
<pre><211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: Porcine circovirus </pre> <pre><400> SEQUENCE: 10 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1</pre>	ttcagagaat ttaatcttaa agacccccca cttaaaccct aa	702
Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg 1 Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 20 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 90 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	<211> LENGTH: 233 <212> TYPE: PRT	
Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro 30 Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 45 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	<400> SEQUENCE: 10	
Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr		
Arg His Arg Tyr Arg Trp Arg Lys Asn Gly Ile Phe Asn Thr Arg 45 Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 50 Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr		
Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr 55 Thr Val Lys Ala Thr Thr Val Arg Thr Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 80 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg	
Fro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val 65 70 75 80 Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr		
Fro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr	50 55 60	
85 90 95 Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr		
Gln Gly Asp Arg Gly Val Gly Ser Thr Ala Val Ile Leu Asp Asp Asn 115 120 125		
Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr		

```
135
Ser Ser Arg His Thr Ile Ala Gln Pro Phe Ser Tyr His Ser Arg Tyr
           150
                               155
Phe Thr Pro Lys Pro Val Leu Asp Ser Thr Ile Asp Tyr Phe Gln Pro
                                 170
Asn Asn Lys Arg Asn Gln Leu Trp Met Arg Leu Gln Thr Ser Arg Asn
                               185
Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Ile Tyr Asp
Gln Asp Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe
Asn Leu Lys Asp Pro Pro Leu Lys Pro
<210> SEQ ID NO 11
<211> LENGTH: 233
<212> TYPE: PRT
<213> ORGANISM: Porcine circovirus
<400> SEOUENCE: 11
Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg
Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro
Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg
Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Thr Thr
Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val
Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr
Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr
Gln Gly Asp Arg Gly Val Gly Ser Thr Ala Val Ile Leu Asp Asp Asn
Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr
Ser Ser Arg His Thr Ile Pro Gln Pro Phe Ser Tyr His Ser Arg Tyr
Phe Thr Pro Lys Pro Val Leu Asp Ser Thr Ile Asp Tyr Phe Gln Pro
Asn Asn Lys Arg Asn Gln Leu Trp Leu Arg Leu Gln Thr Ser Arg Asn
Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Lys Tyr Asp
                          200
Gln Asp Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe
                     215
Asn Leu Lys Asp Pro Pro Leu Lys Pro
<210> SEQ ID NO 12
<211> LENGTH: 713
<212> TYPE: DNA
```

<213> ORGANISM: Porcine circovirus

-continued

<400> SEQUENCE: 12 cagetatgae gtatecaagg aggegttaee geagaagaag acacegeeee egeageeate 60 ttggccagat cctccgccgc cgcccctggc tcgtccaccc ccgccaccgc taccgttgga gaaggaaaaa tggcatcttc aacacccgcc tctcccgcac cttcggatat actgtggaga aggaaaaatg gcatcttcaa caccegeete teeegeaeet teggatatae tgtgaegaet ttgttccccc gggagggggg accaacaaaa tctctatacc ctttgaatac tacagaataa gaaaggttaa ggttgaattc tggccctgct cccccatcac ccagggtgat aggggagtgg gctccactgc tgttattcta gatgataact ttgtaacaaa ggccacagcc ctaacctatg accoatatgt aaactactoo tooogocata caatooocca accottotoo taccactooc gttacttcac acccaaacct gttcttgact ccactattga ttacttccaa ccaaataaca aaaqqaatca qctttqqctq aqqctacaaa cctctaqaaa tqtqqaccac qtaqqcctcq qcactqcqtt cqaaaacaqt aaatacqacc aqqactacaa tatccqtqta accatqtatq 713 tacaattcaq aqaatttaat cttaaaqacc ccccacttaa accctaaatq aat <210> SEQ ID NO 13 <211> LENGTH: 233 <212> TYPE: PRT <213 > ORGANISM: Porcine circovirus <400> SEQUENCE: 13 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg Ser His Leu Gly Gln Ile Leu Arg Arg Pro Trp Leu Val His Pro Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Thr Thr Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr Gln Gly Asp Arg Gly Val Gly Ser Thr Ala Val Ile Leu Asp Asp Asn Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr Ser Ser Arg His Thr Ile Pro Gln Pro Phe Ser Tyr His Ser Arg Tyr Phe Thr Pro Lys Pro Val Leu Asp Ser Thr Ile Asp Tyr Phe Gln Pro 170 Asn Asn Lys Arg Asn Gln Leu Trp Leu Arg Leu Gln Thr Ser Arg Asn Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Lys Tyr Asp 200 Gln Asp Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe 215

Asn Leu Lys Asp Pro Pro Leu Glu Pro 225 230

-continued

<210> SEQ ID NO 14 <211> LENGTH: 713 <212> TYPE: DNA <213> ORGANISM: Porcine circovirus <400> SEQUENCE: 14 60 cogocatgac gtatocaagg aggogttaco gcagaagaag acacogocoo ogcagocato ttggccagat cctccgccgc cgcccctggc tcgtccaccc ccgccaccgc taccgttgga gaaggaaaaa tggcatcttc aacacccgcc tctcccgcac cttcggatat actgtcaagg ctaccacagt cacaacgccc tcctgggcgg tggacatgat gagatttaat attgacgact ttgttccccc gggaggggg accaacaaaa tctctatacc ctttgaatac tacagaataa gaaaggttaa ggttgaatte tggeeetget eecceateae eeagggtgat aggggagtgg getecactge tgttatteta gatgataact ttgtaacaaa ggeeacagee etaacetatg accoatatgt aaactactcc tocogocata caatcococa accottotoc taccactoco gttacttcac acccaaacct gttcttgact ccactattga ttacttccaa ccaaataaca 540 aaaggaatca getttggetg aggetacaaa eetetagaaa tgtggaecae gtaggeeteg 600 660 gcactgcgtt cgaaaacagt aaatacgacc aggactacaa tatccgtgta accatgtatg tacaattcag agaatttaat cttaaagacc ccccacttga accctaagaa ttc 713 <210> SEQ ID NO 15 <211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: Porcine circovirus <400> SEQUENCE: 15 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg Ser His Leu Gly Gln Ile Leu Arg Arg Pro Trp Leu Val His Pro Arg His Arg Tyr Arg Trp Arg Lys Asn Gly Ile Phe Asn Thr Arg Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Arg Thr Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asp Asp Phe Val Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr Arg Ile Lys Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr Gln Gly Asp Arg Gly Val Gly Ser Thr Ala Val Ile Leu Asp Asp Asn Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr 135 Ser Ser Arg His Thr Ile Pro Gln Pro Phe Ser Tyr His Ser Arg Tyr Phe Thr Pro Lys Pro Val Leu Asp Ser Thr Ile Asp Tyr Phe Gln Pro 170 Asn Asn Lys Arg Asn Gln Leu Trp Leu Arg Leu Gln Thr Ser Arg Asn 185 Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Ile Tyr Asp

200

195

-continued

Gln Asp Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe 210 215 220 Asn Leu Lys Asp Pro Pro Leu Lys Pro 225 <210> SEQ ID NO 16 <211> LENGTH: 15450 <212> TYPE: DNA <213> ORGANISM: Porcine reproductive and respiratory syndrome virus <400> SEQUENCE: 16 atgacgtata ggtgttggct ctatgccacg gcatttgtat tgtcaggagc tgtggccatt 60 ggcacagccc aaaacttgct gcacggaaaa cgcccttctg tgacagcctt cttcagggga gettaggggt etgteectag eacettgett etggagttge aetgetttae ggteteteea cccctttaac catgtctggg atacttgatc ggtgcacgtg cacccccaat gccagggtgt 240 ttatqqcqqa qqqccaaqtc tactqcacac qatqtctcaq tqcacqqtct ctccttcctc 300 tqaatctcca aqttcctqaq cttqqqqtqc tqqqcctatt ttataqqccc qaaqaqccac 360 teeggtggae gttgeeacgt geatteecea etgtegagtg eteecetgee ggggeetget 420 480 ggctttctgc gatctttcca attgcacgaa tgaccagtgg aaacctgaac tttcaacaaa gaatggtgcg ggttgcagct gagatttaca gagccggcca actcacccct gcagttttga 540 aggetetaca agtttatgaa eggggttgte getggtacce cattgtegga eetgteeetg 600 gagtggccgt ttacgccaac tccctacatg tgagtgacaa acctttcccg ggagcaactc 660 atgtgttaac caacctaccg ctcccgcaga ggcccaagcc tgaagacttt tgcccttttg 720 agtgtgctat ggctaacgtc tatgacattg gccataacgc cgtcatgtat gtggccagag 780 ggaaagtctc ctgggcccct cgtggcgggg atgaagtgaa atttgaaacc gtccccgaag 840 agttgaagtt gattgegaac egacteeaca teteetteee geeceaceae geagtggaca 900 tgtctgagtt tgccttcata gcccctggga gtggtgtctc cttgcgggtc gagcaccaac 960 acggctgcct tcccgctgat actgtccctg atgggaactg ctggtggtac ttgtttgact 1020 tgctcccacc ggaagttcag aataaagaaa ttcgccgtgc taaccaattt ggctatcaaa 1080 ccaagcatgg tgtccatggc aagtacctac agcggaggct gcaagttaat ggtctccgag 1140 cagtgactga tacagatgga cctattgtcg tacagtactt ctctgttagg gagagttgga 1200 teegeeactt cagaetggeg gaagaaceta geeteeetgg gtttgaagae eteeteagaa 1260 taagggtaga gcctaatacg tcgccaatgg gtggcaaggg tgaaaaaatc ttccggtttg 1320 gcagtcacaa gtggtacggt gctggaaaga gagcaaggag agcacgctct ggtgcgactg 1380 ccacggtcgc tcaccgcgct ttgcccgctc gcgaagccca gcaggccaag aagctcgagg ttgccagcgc caacagggct gagcatctca agtactattc cccgcctgcc gacgggaact 1500 qtqqttqqca ctqcatttcc qccattacca accqqatqqt qaattccaaa tttqaaacca 1560 ctcttcccga gagagtgaga ccttcagatg actgggctac tgacgaggat cttgtgaata 1620 ccatccaaat cctcaggctc cccgcggcct tggacaggaa cggtgcttgt gctggcgcca 1680 agtacgtgct caagctggaa ggtgagcact ggaccgtctc tgtgacccct gggatgaccc 1740 cttctttgct cccccttgaa tgtgttcagg gttgttgtga gcataagagc ggtcttggtt 1800

tcccagacgt ggtcgaagtt tccggatttg accctgcctg tcttgaccga cttgctgaga

taatgcactt gcctagcagt gtcatcccag ctgctctggc cgagatgtcc gacgacttca

atogtotggc ttccccggcc gccactgtgt ggactgtttc gcaattcttt gcccgccaca

1860

1920

1980

gaggaggaga	gcatcctgac	caggtgtgct	tagggaaaat	tatcaacctt	tgtcaggtga	2040
ttgaggaatg	ctgctgttcc	cggaacaaag	ccaaccgggc	taccccggaa	gaggttgcgg	2100
caaaagttga	ccagtacctc	cgtggtgcag	caagccttgg	agaatgcttg	gccaagcttg	2160
agagggctcg	cccgccgagc	gcgacggaca	cctcctttga	ttggaatgtt	gtgcttcctg	2220
gggttgagac	ggcgaatcag	acaaccaaac	agctccatgt	caaccagtgc	cgcgctctgg	2280
ttcctgtcgt	gactcaagag	cctttggaca	gagactcggt	ccctctgacc	gccttctcgc	2340
tgtccaattg	ctactaccct	gcacaaggtg	acgaggtccg	tcaccgtgag	aggctaaact	2400
ccttgctctc	taagttggag	ggggttgttc	gtgaggaata	tgggctcacg	ccaactggac	2460
ctggcccgcg	acccgcactg	ccgaacgggc	tcgacgagct	taaagaccag	atggaggagg	2520
atctgctgaa	attagtcaac	gcccaggcaa	cttcagaaat	gatggcctgg	gcagccgagc	2580
aggttgatct	aaaagcttgg	gtcaaaaatt	acccacggtg	gacaccgcca	cccctccac	2640
caagagttca	gcctcgaaaa	acgaagtctg	tcaagagctt	gctagagaac	aagcctgtcc	2700
ctgctccgcg	caggaaggtc	agatctgatt	gtggcagccc	gattttgatg	ggcgacaatg	2760
ttcctaacgg	ttgggaagat	tegaetgttg	gtggtcccct	tgatctttcg	gcaccatccg	2820
agccgatgac	acctctgagt	gagcctgtac	ttatttccag	gccagtgaca	tctttgagtg	2880
tgccggcccc	agttcctgca	ccgcgtagag	ctgtgtcccg	accgatgacg	ccctcgagtg	2940
agccaatttt	tgtgtctgca	ctgcgacaca	aatttcagca	ggtggaaaaa	gcaaatctgg	3000
cggcagcagc	gccgatgtgc	caggacgaac	ccttagattt	gtctgcatcc	tcacagactg	3060
aatatgaggc	ttccccccta	acaccaccgc	agaacgtggg	cattctggag	gtaagggggc	3120
aagaagctga	ggaagttctg	agtgaaatct	cggatattct	gaatgatacc	aaccctgcac	3180
ctgtgtcatc	aagcagctcc	ctgtcaagtg	ttaagatcac	acgcccaaaa	tactcagctc	3240
aagccattat	cgactcgggc	gggccctgca	gtgggcacct	ccaaagggaa	aaagaagcat	3300
gcctccgcat	catgcgtgaa	gcttgtgatg	cggccaagct	tagtgaccct	gccacgcagg	3360
aatggctttc	tcgcatgtgg	gatagggtgg	acatgctgac	ttggcgcaac	acgtctgctt	3420
accaggcgtt	tcgcacctta	gatggcaggt	ttgggtttct	cccaaagatg	atactcgaga	3480
cgccgccgcc	ctacccgtgt	gggtttgtga	tgttgcctca	cacccctgca	ccttccgtga	3540
gtgcagagag	cgaccttacc	attggttcag	tegecaetga	agatattcca	cgcatcctcg	3600
ggaaaataga	aaataccggt	gagatgatca	accagggacc	cttggcatcc	tctgaggaag	3660
aaccggtata	caaccaacct	gccaaagact	cccggatatc	gtcgcggggg	tctgacgaga	3720
gcacagcagc	teegteegeg	ggtacaggtg	gegeeggett	atttactgat	ttgccacctt	3780
cagacggcgt	agatgeggae	ggtgggggc	cgttgcagac	ggtaagaaag	aaagctgaaa	3840
ggctcttcga	ccaattgagc	cgtcaggttt	ttaacctcgt	ctcccatctc	cctgttttct	3900
tctcacacct	cttcaaatct	gacagtggtt	attctccggg	tgattggggt	tttgcagctt	3960
ttactctatt	ttgcctcttt	ttgtgttaca	gctacccatt	cttcggtttc	gttcccctct	4020
tgggtgtatt	ttetgggtet	teteggegtg	tgcgcatggg	ggtttttggc	tgctggctgg	4080
cttttgctgt	tggcctgttc	aagcctgtgt	ccgacccagt	cggcactgct	tgtgagtttg	4140
actcgccaga	gtgcaggaac	gtccttcatt	cttttgagct	tctcaaacct	tgggaccctg	4200
ttegeageet	tgttgtgggc	cccgtcggtc	teggtettge	cattettgge	aagttactgg	4260
			ttaggcttgg			4320
	33	,	55		-	

-continued
Concinaca

tggctggagc ttatgtgctt	tctcaaggta	ggtgtaaaaa	gtgctgggga	tcttgtataa	4380
gaactgctcc taatgaaatc	gccttcaacg	tgttcccttt	tacacgtgcg	accaggtcgt	4440
cactcatcga cctgtgcgat	cggttttgtg	cgccaacagg	catggacccc	attttcctcg	4500
ccactgggtg gcgtgggtgc	tggaccggcc	gaagtcccat	tgagcaaccc	tctgaaaaac	4560
ccatcgcgtt cgcccagttg	gatgaaaaga	ggattacggc	tagaactgtg	gtcgctcagc	4620
cttatgatcc taatcaagcc	gtgaagtgct	tgcgggtgtt	acaggcgggt	ggggcgatgg	4680
tggccgaggc agtcccaaaa	gtggccaaag	tttctgctat	tccattccga	gccccttttt	4740
ttcccaccgg agtgaaagtt	gatcccgagt	gcaggatcgt	ggttgacccc	gatactttta	4800
ctacageeet eeggtetggt	tactctacca	caaacctcgt	ccttggtgtg	ggggactttg	4860
cccagctgaa tggactaaag	atcaggcaaa	tttccaagcc	ttcgggagga	ggcccacacc	4920
tcattgctgc cctgcatgtt	gcctgctcga	tggcgttgca	catgettget	ggggtttatg	4980
taacttcagt ggggtcttgc	ggtgccggca	ccaacgatcc	atggtgcact	aatccgtttg	5040
ccgttcctgg ctacggacca	ggctctctct	gcacgtccag	attgtgcatc	tcccaacatg	5100
geettaeeet geeettgaea	gcacttgtgg	cgggattcgg	tcttcaggaa	atcgccttgg	5160
tegttttgat tttegtttee	atcggaggca	tggctcatag	gttgagttgt	aaggctgata	5220
tgctgtgcat tttacttgca	atcgccagct	atgtttgggt	accccttacc	tggttgcttt	5280
gtgtgtttcc ttgttggttg	cgctggttct	ctttgcaccc	ccttaccatc	ctatggttgg	5340
tgtttttctt gatttctgta	aatatgcctt	cgggaatctt	ggccgtggtg	ttattggttt	5400
ctctttggct tttgggacgt	tatactaaca	ttgctggtct	tgtcaccccc	tatgatattc	5460
atcattacac cagtggcccc	cgcggtgttg	cegeettgge	taccgcacca	gatggaacct	5520
acttggctgc cgtccgccgc	gctgcgttga	ctggtcgcac	catgctgttc	accccgtctc	5580
agcttgggtc ccttcttgag	ggcgctttca	gaactcgaaa	gccctcactg	aacaccgtca	5640
atgtggttgg gtcctccatg	ggctctggtg	gagtgttcac	catcgacggg	aaaattaggt	5700
gcgtgactgc cgcacatgtc	cttacgggta	atteggetag	ggtttccgga	gtcggcttca	5760
atcaaatgct tgactttgat	gtgaaagggg	acttcgccat	agctgattgc	ccgaattggc	5820
aaggagetge teecaagace	caattctgcg	aggacggatg	gactggccgt	gcctattggc	5880
tgacatecte tggcgtcgaa	cccggtgtta	ttgggaatgg	attcgccttc	tgcttcaccg	5940
cgtgcggcga ttccgggtcc	ccagtgatca	ccgaagctgg	tgagattgtc	ggcgttcaca	6000
caggatcaaa taaacaagga	ggtggcatcg	tcacgcgccc	ttcaggccag	ttttgtaacg	6060
tggcacccat caagctgagc	gaattaagtg	aattctttgc	tggacccaag	gtcccgctcg	6120
gtgatgtgaa ggttggcagc	cacataatta	aagacacgtg	cgaagtacct	tcagatcttt	6180
gcgccttgct tgctgccaaa	cctgaactgg	agggaggcct	ctccaccgtc	caacttctgt	6240
gtgtgttttt cctactgtgg	agaatgatgg	gacatgcctg	gacgcccttg	gttgctgtgg	6300
ggtttttcat tctgaatgag	gttctcccag	ctgtcctggt	tcggagtgtt	ttctcctttg	6360
ggatgtttgt gctatcttgg	ctcacaccat	ggtctgcgca	agttctgatg	atcaggcttc	6420
taacagcagc tcttaacagg	aacagatggt	cacttgcctt	ttacagcctt	ggtgcggtga	6480
ccggttttgt cgcagatctt	geggtaaete	aagggcaccc	gttgcaggca	gtaatgaatt	6540
tgagcaccta tgccttcctg	cctcggatga	tggttgtgac	ctcaccagtc	ccagtgattg	6600
cgtgtggtgt tgtgcaccta	cttgccatca	ttttgtactt	gttcaagtac	cgcggcctgc	6660
acaatgttct tgttggtgat	ggagcgtttt	ctgcagcttt	cttcttgcga	tactttgccg	6720

agggaaagtt	gagggaaggg	gtgtcgcaat	cctgcggaat	gaatcatgag	tcattgactg	6780
gtgccctcgc	tatgagactc	aatgacgagg	acttggactt	ccttacgaaa	tggactgatt	6840
ttaagtgctt	tgtttctgcg	tccaacatga	ggaatgcagc	aggccaattc	atcgaggctg	6900
cctatgcaaa	agcacttaga	attgaacttg	cccagttggt	gcaggttgat	aaggttcgag	6960
gtactttggc	caagcttgag	gcttttgctg	ataccgtggc	accccaactc	tegeceggtg	7020
acattgttgt	tgctcttggc	catacgcctg	ttggcagcat	cttcgaccta	aaggttggtg	7080
gtaccaagca	tactctccaa	gtcattgaga	ccagagtcct	tgccgggtcc	aaaatgaccg	7140
tggcgcgcgt	cgttgaccca	acccccacgc	ccccacccgc	acccgtgccc	atccccctcc	7200
caccgaaagt	tctagagaat	ggtcccaacg	cctgggggga	tggggaccgt	ttgaataaga	7260
agaagaggcg	taggatggaa	accgtcggca	tctttgtcat	gggtgggaag	aagtaccaga	7320
aattttggga	caagaattcc	ggtgatgtgt	tttacgagga	ggtccatgac	aacacagatg	7380
cgtgggagtg	cctcagagtt	ggtgaccctg	ccgactttaa	ccctgagaag	ggaactctgt	7440
gtgggcatac	tactattgaa	gataaggatt	acaaagtcta	cgcctcccca	tctggcaaga	7500
agttcctggt	ccccgtcaac	ccagagagcg	gaagagccca	atgggaagct	gcaaagcttt	7560
ccgtggagca	ggcccttggc	atgatgaatg	tcgacggtga	actgacggcc	aaagaagtgg	7620
agaaactgaa	aagaataatt	gacaaacttc	agggccttac	taaggagcag	tgtttaaact	7680
gctagccgcc	agcggcttga	cccgctgtgg	tegeggegge	ttggttgtta	ctgagacagc	7740
ggtaaaaata	gtcaaatttc	acaaccggac	tttcacccta	gggcctgtga	atttaaaagt	7800
ggccagtgag	gttgagctga	aagacgcggt	cgagcacaac	caacacccgg	ttgcaagacc	7860
ggttgacggt	ggtgttgtgc	teetgegtte	cgcagttcct	tegettatag	atgtcctgat	7920
ctccggtgct	gacgcatctc	ctaagttact	cgctcgtcac	gggccgggga	acactgggat	7980
cgatggcacg	ctttgggact	ttgaggccga	ggccaccaaa	gaggaaattg	cgctcagtgc	8040
gcaaataata	caggettgtg	acattaggcg	cggtgacgca	cctgaaattg	gtctccctta	8100
caagctgtac	cctgttaggg	gcaaccctga	gcgggtaaaa	ggagttttac	agaatacaag	8160
gtttggagac	ataccttaca	aaacccccag	tgacactggg	agcccagtgc	acgcggctgc	8220
ctgcctcacg	cccaatgcca	ctccggtgac	tgatgggcgc	teegtettgg	ctactaccat	8280
gccctccggt	tttgaattgt	atgtaccgac	cattccagcg	tetgteettg	attatcttga	8340
ctctaggcct	gactgcccca	aacagttgac	agagcacggc	tgtgaggatg	ccgcattgag	8400
agacctctcc	aagtatgact	tgtccaccca	aggetttgtt	ttacctgggg	ttettegeet	8460
tgtgcgtaag	tacctgtttg	cccacgtggg	taagtgcccg	cccgttcatc	ggccttccac	8520
ttaccctgcc	aagaattcta	tggctggaat	aaatgggaac	aggtttccaa	ccaaggacat	8580
tcagagcgtc	cccgaaatcg	acgttctgtg	cgcacaggcc	gtgcgagaaa	actggcaaac	8640
tgttacccct	tgtaccctca	agaaacagta	ttgtgggaag	aagaagacta	ggacaatact	8700
cggcaccaat	aatttcattg	cgttggccca	ccgggcagcg	ttgagtggtg	tcacccaggg	8760
cttcatgaaa	aaggcgttta	actcgcccat	cgccctcggg	aaaaacaaat	ttaaggagct	8820
acagactccg	atcttaggca	ggtgccttga	agctgatctt	gcatcctgtg	atcgatccac	8880
acctgcaatt	gtccgctggt	ttgccgccaa	ccttctttat	gaacttgcct	gtgctgaaga	8940
gcacctaccg	tcgtacgtgc	tgaactgctg	ccatgaccta	ttggtcacgc	agtccggcgc	9000
agtgactaag	aggggtggcc	tgtcgtctgg	cgacccgatc	acttctgtgt	ctaacaccat	9060

-continued

ttacagcttg	gtgatatatg	cacagcacat	ggtgcttagt	tactttaaaa	gtggtcaccc	9120
tcatggcctt	ctgttcctac	aagaccagct	gaagttcgag	gacatgctca	aagtccaacc	9180
cctgatcgtc	tattcggacg	acctcgtgct	gtatgccgaa	tctcccacca	tgccgaacta	9240
ccactggtgg	gtcgaacatc	tgaatttgat	gctgggtttt	cagacggacc	caaagaagac	9300
agccataacg	gactcgccat	catttctagg	ctgtaggata	ataaatggac	gccagctagt	9360
ccccaaccgt	gacaggatcc	tegeggeeet	cgcttaccat	atgaaggcaa	acaatgtttc	9420
tgaatactac	gccgcggcgg	ctgcaatact	catggacagc	tgtgcttgtt	tagagtatga	9480
tcctgaatgg	tttgaagagc	ttgtggttgg	gatagcgcat	tgcgcccgca	aggacggcta	9540
cagettteee	ggcccgccgt	tettettgte	catgtgggaa	aaactcagat	ccaatcatga	9600
ggggaagaag	tccagaatgt	gcgggtattg	cggggccctg	gctccgtacg	ccactgcctg	9660
tggcctcgac	gtctgtattt	accacaccca	cttccaccag	cattgtccag	tcacaatctg	9720
gtgtggccac	ccggctggtt	ctggttcttg	tagtgagtgc	aaaccccccc	tagggaaagg	9780
cacaagccct	ctagatgagg	tgttagaaca	agtcccgtat	aagcctccac	ggactgtaat	9840
catgcatgtg	gagcagggtc	tcacccctct	tgacccaggc	agataccaga	ctcgccgcgg	9900
attagtctcc	gttaggcgtg	gcatcagagg	aaatgaagtt	gacctaccag	acggtgatta	9960
tgctagcacc	gccctactcc	ccacttgtaa	agagatcaac	atggtcgctg	tcgcctctaa	10020
tgtgttgcgc	agcaggttca	tcatcggtcc	gcccggtgct	gggaaaacat	actggctcct	10080
tcagcaggtc	caggatggtg	atgtcattta	cacaccgact	caccagacca	tgctcgacat	10140
gattagggct	ttggggacgt	gccggttcaa	cgtcccagca	ggtgcaacgc	tgcaattccc	10200
tgccccctcc	cgtaccggcc	cgtgggttcg	catcctagcc	ggcggttggt	gtcctggtaa	10260
gaatteette	ttggatgaag	cagcgtattg	taatcacctt	gatgtcttga	ggctccttag	10320
caaaaccacc	ctcacctgtc	tgggagactt	caaacaactc	cacccagtgg	gttttgattc	10380
tcattgctat	gtttttgaca	tcatgcctca	gacccagttg	aagaccatct	ggagattcgg	10440
acagaacatc	tgtgatgcca	tccaaccaga	ttacagggac	aaacttgtgt	ccatggtcaa	10500
cacaacccgt	gtaacccacg	tggaaaaacc	tgtcaagtat	gggcaagtcc	tcacccctta	10560
ccacagggac	cgagaggacg	gcgccatcac	aattgactcc	agtcaaggcg	ccacatttga	10620
tgtggtcaca	ctgcatttgc	ccactaaaga	ttcactcaac	aggcaaagag	cccttgttgc	10680
tatcaccagg	gcaagacatg	ctatctttgt	gtatgaccca	cacaggcaat	tgcagagcat	10740
gtttgatctt	cctgcgaagg	gcacacccgt	caacctcgca	gtgcaccgtg	atgagcagct	10800
gategtaetg	gatagaaata	ataaagaatg	cacagttgct	caggetetag	gcaacggaga	10860
taaatttagg	gccaccgaca	agcgcgttgt	agattctctc	cgcgccattt	gtgctgatct	10920
ggaagggtcg	ageteteege	tccccaaggt	cgcacacaac	ttgggatttt	atttctcacc	10980
tgatttgaca	cagtttgcta	aactcccggt	agaccttgca	ccccactggc	ccgtggtgac	11040
aacccagaac	aatgaaaagt	ggccggatcg	gctggttgcc	agccttcgcc	ctgtccataa	11100
gtatagccgt	gcgtgcattg	gtgccggcta	tatggtgggc	ccctcggtgt	ttctaggcac	11160
ccctggggtc	gtgtcatact	acctcacaaa	atttgtcaag	ggcgaggctc	aagtgcttcc	11220
ggagacagtc	ttcagcaccg	gccgaattga	ggtggattgc	cgggagtatc	ttgatgacag	11280
ggagcgagaa	gttgctgagt	ccctcccaca	tgccttcatt	ggcgacgtca	aaggcaccac	11340
	tgtcatcatg					11400
	gtcggggttt					11460
J J - 55 5 4	555555	5-5-559	J J = = 5 = W		5	

ggatgtgtac	ctcccagacc	ttgaggccta	cctccaccca	gagactcagt	ccaagtgctg	11520
gaaagttatg	ttggacttca	aggaagttcg	actgatggtc	tggaaagaca	agacggccta	11580
tttccaactt	gaaggccgct	atttcacctg	gtatcagctt	gcaagctacg	cctcgtacat	11640
ccgtgttcct	gtcaactcca	cggtgtatct	ggacccctgc	atgggccctg	ccctttgcaa	11700
cagaagagtt	gtcgggtcca	cccattgggg	agctgacctc	gcagtcaccc	cttatgatta	11760
cggtgctaaa	atcatcttgt	ctagcgctta	ccatggtgaa	atgcctcctg	gatacaagat	11820
tctggcgtgc	gcggagttct	cgctcgacga	cccagtcaag	tacaaacaca	cctggggttt	11880
tgaatcggat	acagcgtatc	tgtatgagtt	caccggaaac	ggtgaggact	gggaggatta	11940
caatgatgcg	tttegtgege	gccagaaagg	gaaaatttat	aaggccactg	ctaccagcat	12000
gaagttttat	tttcccccgg	gccccgtcat	tgaaccaact	ttaggcctga	attgaaatga	12060
aatggggtct	atacaaagcc	tcttcgacaa	aattggccag	ctttttgtgg	atgctttcac	12120
ggaatttttg	gtgtccattg	ttgatatcat	catatttttg	gccattttgt	ttggcttcac	12180
catcgccggt	tggctggtgg	tcttttgcat	cagattggtt	tgctccgcgg	tattccgtgc	12240
gegeeetgee	attcaccctg	agcaattaca	gaagatccta	tgaggccttt	ctttctcagt	12300
gccgggtgga	cattcccacc	tggggggtaa	aacacccttt	ggggatgttt	tggcaccata	12360
aggtgtcaac	cctgattgat	gaaatggtgt	cgcgtcgaat	gtaccgcgtc	atggataaag	12420
cagggcaagc	tgcctggaaa	caggtggtga	gcgaggctac	gctgtctcgc	attagtagtc	12480
tggatgtggt	ggctcatttt	caacatcttg	ccgccattga	agccgagacc	tgtaaatatt	12540
tggcttctcg	actgcccatg	ctacacaacc	tgcgcatgac	agggtcaaat	gtaaccatag	12600
tgtataatag	cactttaaat	caggtgtttg	ctattttcc	aacccctggt	tcccggccaa	12660
agcttcatga	ttttcagcaa	tggctaatag	ctgtacattc	ctccatattt	tcctctgttg	12720
cagcttcttg	tactcttttt	gttgtgctgt	ggttgcgggt	tccaatgcta	cgtactgttt	12780
ttggtttccg	ctggttaggg	gcaatttttc	tttcgaactc	atggtgaatt	acacggtgtg	12840
tecacettge	ctcacccgac	aagcagccgc	tgaggtcctt	gaacccggta	ggtctctttg	12900
gtgcaggata	gggcatgacc	gatgtgggga	ggacgatcac	gacgaactgg	ggttcatggt	12960
teegeetgge	ctctccagcg	aaagccactt	gaccagtgtt	tacgcctggt	tggcgttcct	13020
gtccttcagc	tacacggccc	agttccatcc	cgagatattt	gggataggga	acgtgagtga	13080
agtttatgtt	gacatcaagc	accaattcat	ctgcgccgtt	catgacgggc	agaacaccac	13140
cttgcctcgc	catgacaata	tttcagccgt	atttcagacc	tactatcaac	atcaggtcga	13200
cggcggcaat	tggtttcacc	tagaatggct	gcgtcccttc	ttttcctctt	ggttggtttt	13260
aaatgtttcg	tggtttctca	ggcgttcgcc	tgcaagccat	gtttcagttc	gagtetttea	13320
gacatcaaaa	ccaacactac	cgcagcatca	ggctttgttg	tcctccagga	catcagctgc	13380
cttaggcatg	gegaetegte	ctttccgacg	attcgcaaaa	gctctcaatg	ccgcacggcg	13440
atagggacac	ctgtgtatat	caccatcaca	gccaatgtga	cagatgagaa	ttacttacat	13500
tcttctgatc	tecteatget	ttcttcttgc	cttttctatg	cttctgagat	gagtgaaaag	13560
ggattcaagg	tggtatttgg	caatgtgtca	ggcatcgtgg	ctgtgtgtgt	caactttacc	13620
agctacgtcc	aacatgtcaa	agagtttact	caacgctcct	tggtggtcga	tcatgtgcgg	13680
ctgcttcatt	tcatgacacc	tgagaccatg	aggtgggcaa	ccgttttagc	ctgtcttttt	13740
gccatcctac	tggcaatttg	aatgttcaag	tatgttgggg	aaatgcttga	ccgcgggctg	13800

ttgctcgcga	ttgctttctt	tgtggtgtat	cgtgccgttc	tggtttgctg	tgctcggcaa	13860
cgccaacagc	agcagcagct	ctcatttcca	gttgatttat	aacttgacgc	tatgtgagct	13920
gaatggcaca	gattggctgg	cagaaaaatt	tgattgggcg	gtggagactt	ttgtcatctt	13980
tcccgtgttg	actcacattg	tttcctattg	tgcactcacc	accagccatt	tccttgacac	14040
agttggtctg	gttactgtgt	ccaccgccgg	gttttatcac	gggcggtatg	tettgagtag	14100
catctacgcg	gtctgtgctc	tggctgcgtt	gatttgcttc	gttattaggc	ttgcgaagaa	14160
ctgcatgtcc	tggcgctact	cttgtaccag	atataccaac	tteettetgg	acactaaggg	14220
cagactctat	cgttggcggt	cgcccgttat	catagaaaaa	aggggtaagg	ttgaggtcga	14280
aggtcatctg	atcgacctca	aaagagttgt	gcttgatggt	tccgtggcaa	cccctttaac	14340
cagagtttca	gcggaacaat	ggggtcgtct	ctagacgact	tttgccatga	tagcactgct	14400
ccacaaaagg	tgcttttggc	gttttccatt	acctacacgc	cagtaatgat	atatgctcta	14460
aaggtaagtc	gcggccgact	gctagggctt	ctgcaccttt	tgatctttct	gaattgtgct	14520
tttaccttcg	ggtacatgac	attcgcgcac	tttcagagca	caaatagggt	cgcgctcgct	14580
atgggagcag	tagttgcact	tetttggggg	gtgtactcag	ccatagaaac	ctggaaattc	14640
atcacctcca	gatgccgttt	gtgcttgcta	ggccgcaagt	acattctggc	ccctgcccac	14700
cacgtcgaaa	gtgccgcggg	ctttcatccg	attgcggcaa	atgataacca	cgcatttgtc	14760
gtccggcgtc	ccggctccat	tacggttaac	ggcacattgg	tgcccgggtt	gaaaagcctc	14820
gtgttgggtg	gcagaaaagc	tgttaaacag	ggagtggtaa	accttgtcaa	atatgccaaa	14880
taacaacggc	aagcagcaaa	agaaaaagaa	ggggaatggc	cagccagtca	accagctgtg	14940
ccagatgctg	ggtaaaatca	tegeceagea	aaaccagtcc	agaggcaagg	gaccgggcaa	15000
gaaaagtaag	aagaaaaacc	cggagaagcc	ccattttcct	ctagcgaccg	aagatgacgt	15060
caggcatcac	ttcacccctg	gtgagcggca	attgtgtctg	tcgtcgatcc	agactgcctt	15120
taaccagggc	gctggaactt	gtaccctgtc	agattcaggg	aggataagtt	acactgtgga	15180
gtttagtttg	ccgacgcatc	atactgtgcg	cctgatccgc	gtcacagcat	caccctcagc	15240
atgatgggct	ggcattcttt	aggcacctca	gtgtcagaat	tggaagaatg	tgtggtggat	15300
ggcactgatt	gacattgtgc	ctctaagtca	cctattcaat	tagggcgacc	gtgtgggggt	15360
aaaatttaat	tggcgagaac	catgcggccg	caattaaaaa	aaaaaaaaa	aaaaaaaaa	15420
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa				15450
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAL	TH: 2352 : DNA	ne reproduct	tive and res	spiratory sy	yndrome viru	ıs
<400> SEQUI	ENCE: 17					
cctatcattg	aaccaacttt	aggcctgaat	tgaaatgaaa	tggggtctat	gcaaagcctt	60
tttgacaaaa	ttggccaact	tttcgtggat	gctttcacgg	agttcttggt	gtccattgtt	120
gatatcatta	tatttttggc	cattttgttt	ggcttcacca	tcgccggttg	gctggtggtc	180
ttttgcatca	gattggtttg	ctccgcgata	ctccgtgcgc	gccctgccat	tcactctgag	240
caattacaga	agatcctatg	aggcctttct	ttctcagtgc	caggtggaca	ttcccacctg	300
gggaattaaa	catcctttgg	ggatgctttg	gcaccataag	gtgtcaaccc	tgattgatga	360
aatggtgtcg	cgtcgaatgt	accgcatcat	ggaaaaagca	ggacaggctg	cctggaaaca	420

ggtggtgagc gaggctacgc tgtctcgcat tagtagtttg gatgtggtgg ctcactttca

gcatcttgcc	gccattgaag	ccgagacctg	taaatatttg	gcctctcggc	tgcccatgct	540
acacaacctg	cgcatgacag	ggtcaaatgt	aaccatagtg	tataatagta	ctttgaatca	600
ggtgcttgct	attttcccaa	cccctggttc	ccggccaaag	cttcatgatt	ttcagcaatg	660
gctaatagct	gtacattcct	ctatattttc	ctctgttgca	gcttcttgta	ctctttttgt	720
tgtgctgtgg	ttgcgggttc	caatgctacg	tattgctttt	ggtttccgct	ggttaggggc	780
aatttttctt	tegaaeteae	agtgaactac	acggtgtgtc	caccttgcct	cacccggcaa	840
gcagccacag	aggcctacga	acctggcagg	tctctttggt	gcaggatagg	gtatgatcgc	900
tgtggggagg	acgatcatga	tgaactaggg	tttgtggtgc	cgtctggcct	ctccagcgaa	960
ggccacttga	ccagtgttta	cgcctggttg	gcgttcctgt	ctttcagtta	cacagcccag	1020
ttccatcctg	agatattcgg	gatagggaat	gtgagtcaag	tttatgttga	catcaggcat	1080
caattcattt	gcgccgttca	cgacgggcag	aacgccactt	tgcctcgcca	tgacaatatt	1140
tcagccgtgt	tccagactta	ttaccaacat	caagtcgacg	gcggcaattg	gtttcaccta	1200
gaatggctgc	gtcccttctt	ttcctcttgg	ttggttttaa	atgtctcttg	gtttctcagg	1260
cgttcgcctg	caagccatgt	ttcagttcga	gtcttgcaga	cattaagacc	aacaccaccg	1320
cagcggcagg	ctttgctgtc	ctccaagaca	tcagttgcct	taggtatcgc	aactcggcct	1380
ctgaggcgtt	tcgcaaaatc	cctcagtgtc	gtacggcgat	agggacaccc	atgtatatta	1440
ctgtcacagc	caatgtaacc	gatgagaatt	atttgcattc	ctctgacctt	ctcatgcttt	1500
cttcttgcct	tttctacgct	tctgagatga	gtgaaaaggg	atttaaagtg	gtatttggca	1560
atgtgtcagg	catcgtggct	gtgtgcgtca	actttaccag	ctacgtccaa	catgtcaagg	1620
aatttaccca	acgctccttg	gtagtcgacc	atgtgcggct	gctccatttc	atgacacctg	1680
agaccatgag	gtgggcaact	gttttagcct	gtctttttgc	cattctgttg	gccatttgaa	1740
tgtttaagta	tgttggggaa	atgcttgacc	gcgggctatt	gctcgtcatt	gctttttttg	1800
tggtgtatcg	tgccgtcttg	gtttgttgcg	ctcgccagcg	ccaacagcag	caacagctct	1860
catttacagt	tgatttataa	cttgacgcta	tgtgagctga	atggcacaga	ttggttagct	1920
ggtgaatttg	actgggcagt	ggagtgtttt	gtcatttttc	ctgtgttgac	tcacattgtc	1980
tcctatggtg	ccctcaccac	cagccatttc	cttgacacag	tcggtctggt	cactgtgtct	2040
accgccggct	tttcccacgg	gcggtatgtt	ctgagtagca	tctacgcggt	ctgtgccctg	2100
gctgcgttga	tttgcttcgt	cattaggttt	acgaagaatt	gcatgtcctg	gcgctactca	2160
tgtaccagat	ataccaactt	tettetggae	actaagggca	gactctatcg	ttggcggtcg	2220
cctgtcatca	tagagaaaag	gggtaaagtt	gaggtcgaag	gtcatctgat	cgacctcaag	2280
agagttgtgc	ttgatggttc	cgcggcaacc	cctataacca	aagtttcagc	ggagcaatgg	2340
ggtcgtcctt	ag					2352
<210> SEQ 1 <211> LENG' <212> TYPE <213> ORGAL	TH: 886 : DNA	ne reproduct	cive and res	spiratory sy	ndrome viru	S
<400> SEQUI	ENCE: 18					
atggggtcgt	ccttagatga	cttctgccat	gatagcacgg	ctccacaaaa	ggtgcttttg	60
gcgttctcta	ttacctacac	gccagtgatg	atatatgccc	taaaagtaag	tegeggeega	120
ataataaa	++a+aaaaa	+++ <i>~</i> 0+ <i>a</i> ++-	atooottet.	a+++a>ac++	aaaat .a.t	100

ctgctagggc ttctgcacct tttgatcttc ctaaattgtg ctttcacctt cgggtacatg

acattcgtgc	actttcagag	cacaaacaag	gtegegetea	ctatgggagc	agtagttgca	240
ctcctttggg	gggtgtactc	agccatagaa	acctggaaat	tcatcacctc	cagatgccgt	300
ttgtgcttgc	taggccgcaa	gtacattttg	gcccctgccc	accacgttga	aagtgccgca	360
ggctttcatc	cgatagcggc	aaatgataac	cacgcatttg	tegteeggeg	teeeggetee	420
actacggtta	acggcacatt	ggtgcccggg	ttgaaaagcc	tcgtgttggg	tggcagaaaa	480
gctgtcaaac	agggagtggt	aaaccttgtt	aaatatgcca	aataacaacg	gcaagcagca	540
gaagaaaaag	aagggggatg	gccagccagt	caatcagctg	tgccagatgc	tgggtaagat	600
catcgctcag	caaaaccagt	ccagaggcaa	gggaccggga	aagaaaaaca	agaagaaaaa	660
cccggagaag	ccccattttc	ctctagcgac	tgaagatgat	gtcagacatc	acttcacctc	720
tggtgagcgg	caattgtgtc	tgtcgtcaat	ccagacagcc	tttaatcaag	gcgctggaac	780
ttgtaccctg	tcagattcag	ggaggataag	ttacactgtg	gagtttagtt	tgccgacgca	840
tcatactgtg	cgcctgatcc	gcgtcacagc	gtcaccctca	gcatga		886

What is claimed is:

- 1. A trivalent immunogenic composition comprising a soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation; a porcine circovirus type 2 (PCV2) antigen; and a porcine reproductive and respiratory syndrome (PRRS) virus antigen, wherein the soluble portion of the *M.hyo* preparation comprises *M.hyo*-specific soluble protein antigens and is substantially free of insoluble material and both (i) IgG and (ii) immunocomplexes comprised of antigen bound to immunoglobulin.
- 2. The composition of claim 1, wherein the soluble portion of the M.hyo preparation has been treated with protein-A or $_{35}$ protein-G prior to being added to the immunogenic composition.
- 3. The composition of claim 1, wherein the soluble portion of the *M.hyo* preparation and the PCV2 antigen are in the form of a ready-to-use liquid composition.
- **4**. The composition of claim **1**, wherein the PRRS virus antigen is a genetically modified live virus.
- 5. The composition of claim 4, wherein the genetically modified live PRRS virus is in the form of a lyophilized composition.
- **6**. The composition of claim **1**, wherein the composition elicits a protective immune response in a pig against *M.hyo*, PCV2 and PRRS virus.
- 7. The composition of claim 1, wherein the PCV2 antigen is in the form of a chimeric type-1-type 2 circovirus, said 50 chimeric virus comprising an inactivated recombinant porcine circovirus type 1 expressing the porcine circovirus type 2 ORF2 protein.
- **8.** The composition of claim **1**, wherein the PCV2 antigen is in the form of a recombinant ORF2 protein.
- **9**. The composition of claim **8**, wherein the recombinant ORF2 protein is expressed from a baculovirus vector.
- 10. The composition of claim 1, wherein the composition further comprises an adjuvant.
- 11. The composition of claim 10, wherein the adjuvant is selected from the group consisting of an oil-in-water adju-

- vant, a polymer and water adjuvant, a water-in-oil adjuvant, an aluminum hydroxide adjuvant, a vitamin E adjuvant and combinations thereof.
- 12. The composition of claim 1, wherein the composition further comprises a pharmaceutically acceptable carrier.
- 13. The composition of claim 1, wherein the composition elicits a protective immune response against M.hyo, PCV2 and PRRS virus when administered as a single dose administration.
- **14.** A method of immunizing a pig against *M.hyo*, PCV2, and PRRS virus, which comprises administering to the pig the composition of claim **1**.
- 15. The method of claim 14, wherein the composition is administered intramuscularly, intradermally, transdermally, or subcutaneously.
- **16**. The method of claim **14**, wherein the composition is administered in a single dose.
- 17. The method of claim 14, wherein the composition is administered to pigs having maternally derived antibodies against at least one of M.hyo, PCV2, and PRRS virus.
- **18**. The method of claim **14**, wherein the composition is administered to pigs at 3 weeks of age or older.
- 19. A kit comprising: a first bottle comprising a composition including both a PCV2 antigen and the soluble portion of a *Mycoplasma hyopneumoniae* (*M.hyo*) whole cell preparation, wherein the soluble portion of the *M.hyo* preparation comprises *M.hyo*-specific soluble protein antigens and is substantially free of insoluble material and both (i) IgG and (ii) antigen/immunoglobulin immunocomplexes; and a second bottle comprising PRRS virus antigen.
- 20. The kit of claim 19, wherein the composition in the first bottle of the kit is provided as a ready-to-use liquid composition.
- 21. The kit of claim 19, wherein the PRRS virus antigen in the second bottle is in the form of a lyophilized composition.

* * * * *